

GEODETIC REPORT
 VOL. V

From 1st October 1928
To 30th September 1929

PUBLISHED BY ORDER OF
BRIGADIER R. H. THOMAS, D.S.O.
SURVEYOR GENERAL OF INDIA

PRINTED AT THE GEODETIC BRANCH OPFICE, SURVEY OF IN DIA, DEHRA DON, 1930.

Price T'hree Rupees or Five Shillings and I'hree Pence

CONTENTS

PageIntroduction vii
Chapter I
Computations and Publication of data
Para

1. Lambert grid 1
2. Triangulation. Best hour for horizontal angles 5
3. Hayford deflections 6
4. Computation forms and Tables 7
5. Triangulation and Levelling pamphlets 7
6. Drawing Section 7
7. Miscellaneous publications 7
Chapter II Observatories
8. Longitude 11
9. Riefler clock 12
10. Latitude 13
11. Fortnightly variation of latitude 13
12. Gravity 14
13. Standards of length 14
14. Magnetic observations 14
15. Seismograph, and meteorological observations 15
16. Miscellaneous work 15
Chapter III
Tides
17. Tidal observations 31
18. Inspections 33
19. Harmonic analysis 34
20. Corrections to predictions 34
21. Tide-tables 36
22. Proposed tide-tables for the Indian Ocean 36
23. Accuracy of predictions 37
ParaChapter IVGravity and deviation of the vertical
Section I
(i) Field Seabon 1928-29
24. Programme 50
25. Strength of the party 50
26. Method of observation 50
27. Adjustment of Riefler clock 50
(ii) Results of the field work
28. Details 51
29. Results at old pendulum stations 51
30. Basevi stations 52
31. European stations of reference 53
32. Results at new stations 53
(iii) Fifld observations made during recess
33. Shāhpur (Sargodha) and Chakrātā 53
(iv) Research work
34. The figure of the earth 55
35. The geoids 56
36. Deductions from the geoids 57
37. The Hayford gravity anomalies 57
(v) Deviation of the vertical
38. Sind and Baluchistān 59
Section II
Development of Gratity Formulef
39. Rotating body nearly ellipsoidal 65
40. Condensation of crustal anomalies on the surface 66
41. Corrections for toporiaphy 68
42. Relation between deflections and gravity anomalies 68
43. Major Glennie's relation 69
Section III
44. Summary71
45. Anomalies deduced from geoid 71
46. The isostatic geoid 73
47. Gravity deduced from geoid 74
48. Correlation with Geology 75
49. Computation of Geoidal Rise 77
Para
Chapter V
TriangulationPage
50. Summary 80
51. Chittagong Series 81
52. Mong Hsat Series 83
53. Computations 84
54. Wild Precision Theodolites 84
Appendix. Chittagong Series. Height Computations 87
Chaprer VI
Levelling
55. Organization 91
56. Summary of out-turn 91
57. Work of detachments 92
58. Subsidence at Ambāla 94
59. Sukkur-Hyderābād 94
60. Hill Circuits 95
61. Diurnal change of staff length 97
62. Probable Errors 97
63. Progress of the new level net 99
Chapter VII
Research and Technical Notes
I. Dynamic and Orthometric heights
64. Summary of paras 1-3 118
65. Dynamic height 118
66. Orthometric height 120
II. Height correction to Deviation of the Vertical
67. Summary of paras 4-6 122
68. Calculation of the correction 122
69. Application to Dehra-Mussoorie 123
III. Comparison of Spirit-Levelled and Triangulated Heifhts
70. Summary of paras $7-10$ 125
71. The two corrections are identical 125
72. The height of Mussoorie above Dehra Dūn 126
73. Conclusions 127
List of Publications of the Survey of India 129

Charts and plates

Charts and plates		
		Page
	The Geodetic Branch Offices Fro	Frontispiece
Chart I.	Conversion of co-ordinates	
Chart II.	The longitude of Dehra Dūn 1926-29	
Chart III.	Pendulum stations	50
Chart IV.	Latitude stations	
Chart V.	Longitude stations	50
Chart VI.	Average values of $\mathrm{G}^{\prime}{ }_{\mathrm{H}}$ and H	78
Chart VII.	Gravity Anomalies ($g-\gamma_{\mathrm{c}}$)	78
Chart VIII.	Gravity Anomalies ($g-\gamma \mathrm{D}$)	78
Chart IX.	The Isostatic Geoid	. 78
Chart X.	The Geoid on International Spheroid	78
Chart XI.	The compensated geoid on S. of I. Spheroid II	78
Chart XII.	The compensated geoid on the International Spheroid ...	78
Chart XIII.	Deviation of the vertical in Sind and Baluchistān	78
Chart XIV.	Mass Anomalies which would produce the geoid	78
Chart XV.	Gravity Anomalies deduced from the geoid	id ... 78
Chart XVI.	Triangulation series and Azimuth stations	
Chart XVII.	Chittagong Series	90
Chart XVIII.	Lines of Precise Levelling and Tidal stations	ons ... 91
Chart XIX.	Subsidence at Ambāla	94
Chart XX.	Sukkur-Hyderābād levelling	96
Chart XXI.	Staff comparisons. Diurnal variation	97
Chart XXII.	Length of levelling staves 1928-29	116
Chart XXIII.	Length of levelling staves 1928-29	116
Chart XXIV.	Dynamic Correction ...	
Chart XXV.	$\left\{\begin{array}{l} \text { Fig. } 1 \text { Orthometric correction } \\ \text { Fig. } 2 \text { Geoidal Rise } \end{array}\right\}$	120
Chart XXVI. Index to Triangulation pamphlets (India \& Burma) at the end		
Chart XXVII. Index to Triangulation pamphlets		
Chart XXVIII. Average Height Map of India (squared) \} pocket at		
Chart XXIX.	Average Height Map of India (contoured) $\}$	$)^{\text {end }}$

INTRODUCTION

During the year 1928-29 field operations comprised Gravity observations in South and East India, Principal Triangulation in Assam and Burma, and High Precision Levelling in northern India. Three field parties were employed. At headquarters various observations were made and some research work was also carried out in addition to routine duties.

Latitude variation.-The observations with the astrolabe for the International Longitude work of 1926 also yielded values of latitude. These have been analysed (II, 4) and show a clearly marked fortnightly variation, which does not however agree in amplitude with similar results found elsewhere. Obviously all such variations require study with a view to their application as corrections to high precision latitudes; else their precision is wasted.

Possible gravity variation.-Values of g at Dehra Dūn have been determined on several occasions in direct relation to Europe as set forth in IV, 6. The extreme difference obtained, viz 025 $\mathrm{cm} / \mathrm{sec}^{2}$, is rather disconcerting, and the possibility of variation of gravity at Dehra Dūn was suggested. With a view to determining whether such variation indeed existed, seven sets of observations were taken during the year (II,5). The result indicates that there is no periodic variation in g, and leaves the cause of the discrepancies alluded to unexplained.

With the help of the Riefler Clock and a Shortt Clock to be installed in 1930, it is expected that changes in g, if any, will reveal themselves without the need for special observations.

Length standards.-A mural base for determination of tape-lengths has been constructed (II, 6). It is hoped to equip this with means for determining temperature coefficients.

Tidal predictions.-A change in the form of publication of Tide-tables, and considerable extension thereto, has been worked out (III,6). The first volume of "Tides for the Indian Ocean" in this new form will give predictions for 1931.

Gravity.-Chapter IV (11 et seq.) contains research items on gravity. Major Glennie (IV,11-14) makes use of results at 184 stations, not indeed completely covering India, but still deemed an adequate basis for preliminary enquiry.

The value of ϵ which accords best with the observations is $1 / 301 *$, and the corresponding value of equatorial gravity is $978.021 \mathrm{~cm} / \mathrm{sec}^{9}$ (cf. Helmert's 1901 formula $978 \cdot 030$ and $\epsilon=1 / 298 \cdot 3$). Accepting any reasonable value of ϵ, any one gravity station may be used to determine a value of equatorial gravity G^{\prime}, and the value thus found for Indian stations shows a distinct correlation with the height H of the geoid above the spheroid. Put otherwise, the quantity $\gamma_{\mathrm{g}}=$ $\gamma_{\mathrm{o}}+K H$ (where γ_{0} is the ordinary gravity expression e.g. as given by Helmert, and K is a constant) fits the observational results for India better than does γ_{0}. The value of K naturally depends on the spheroid of reference.

Thus for International spheroid $K=\cdot 0019$) H being expressed and for Survey of India spheroid $\quad K=\cdot 0021\}$ in feet.

Major Glennie then proposes the quantity $\gamma_{\nu}=\gamma_{c}+K H$ where γ_{c} is the formula value including correction for topography compensated according to Hayford's hypothesis. Major GTennie points out that K is empirically determined to suit the Indian region, and does not claim any further universality for it. He attributes the cause of the main features of the geoid in India to deep-seated causes (IV, 13): and so considers $g-\gamma_{\mathrm{D}}$ as a measure of those density anomalies which lie closer to the surface. The value of $g-\boldsymbol{\gamma}_{\mathrm{p}}$ may then be expected tofollow the surface density anomalies to some extent.

If the details of these-their mass and extent, particularly in depth-were known from geological sources, they would afford a check on Major Glennie's contention regarding $g-\gamma_{\mathrm{D}}$. Unfortunately the depth is not known ordinarily, and so the check is not quantitatively copplete. In all the places where there is geological knowledge to go on, $g-\gamma_{\mathrm{D}}$ shows some degree of accord which is absent with $g-\gamma_{\mathrm{c}}$. It would appear then that $g-\gamma_{1}$, provides some evidence as to geological densities in India.

In Section II, I have considered the question more theoretically and shown that the relation $\gamma_{\mathrm{D}}=\gamma_{\mathrm{c}}+K H$ can only be strictly true if the irregularities of the geoid can be represented by a single Laplace function, and that this must be the 37 th to yield the value of K found by Major Glennie. This corresponds to a waviness of the geoid of mean angular period 10°, while a glance at the chart of the geoid suggests an angular period of 12° as the main feature. It is not surprising that the expression $\gamma_{c}+K M$ should not absolutely agree with gravity found at all places, but its agreement to a fairly approximate extent is natural.

The matter is attacked differently by Capt. Bomford in Section III. Accepting the geoil as found from deflection observations, he has carried out a solution giving a set of crustal anomalies which are competent to explain this geoid. The solution cannot be exactly true owing to limitation of the area surveyed: but apart from portions close to these limits-generally spealing the coast line and the Himalaya,-it can hardly be far from the truth.

[^0]The solution is interesting in two respects:-
(a) It denies compensation in the restricted form postulated by Hayford, while allowing regional compensation at a suitable depth as a possibility.
(b) It provides a basis of computation for gravity at any point within the region considered.
As regards (a) I have already drawn attention to the failure of Hayford's isostasy in continental India (Geophysical Meeting R.A.S. of 20-4-28: "Observatory" June 1928). It certainly shows the vainness of attempting to compute the form of the geoid or the value of gravity in areas unsurveyed merely from the ordinary formula combined with the topographic effectand its compensation on Hayford's basis, as has been proposed (Bowie, American Journal of Science No. 81, Sept. 1917). Conditions of approximately perfect Hayford isostasy encountered in the United States are not met with in peninsular India: and there does not appear reason to assume them anywhere, until observation has indicated their existence.

As regards (b) the computation has been performed and results are exhibited in Chart XV. The deduced values of gravity are not identical with those found from observation (differing by a quantity E^{\prime}) for a variety of reasons explained in IV, 24. These may be divided into two classes in the second of which (c) falls. Items (a), (b), (d) and (e) are due to limitation of our general knowledge. Item (c) however is a proper goal of pendulum work - to determine the local density anomaly. Accordingly one may hope that $(a),(b)$, (d) and (e) are unimportant in most cases, and that they will be increasingly so as observations are extended: in which case the anomaly of gravity from its value computed from Chart XV would be a fair measure of item (c), the local density anomaly.

This anomaly E is very analogous to Major Glemie's $g-\gamma_{D}$. The quantity E however is not empirical as is $g-\gamma_{1}$, so far as Major Glemie has gone: though a rough representation of the waviness of the geoid gives a theoretical basis for the latter. However E goes further and takes full account of the determined facts, in doubt only so far as limitations IV, $24(a),(b),(d)$ and (e) indicate. It may be regarded, more particularly than $g-\gamma_{\mathrm{D}}$, as the local anomaly. Even so it is not easy to say exactly what is meant by local e.g. we cannot say to what depth an anomalous density persists, or distinguish between a mile thickness of a given anomalous density and a few miles thickness of a less anomalous density. Thus we cannot expect a close correlation between geological densities of unknown depth and either E or $g-\gamma_{v}$. Captain Bomford reaches this conclusion from a somewhat different line of attack (IV, 25).

Any system of anomalous densities within the geoid (or any residue of these after any general correction such as for topography and hypothetical compensation on any theory), can be represented,
so far as effects external to the geoid are concerned, by a hypothetical skin density applied to the geoid: and the gravity anomaly at any point on the geoid is a definite measure of this. The anomaly at a point above the geoid gives a generalised value of the skin anomaly in the neighbourhood. That is as much as geodetic observations can tell precisely. It is another matter to find the actual density anomalies, their amount and distribution. I have shown (IV, 17) the relation between actual anomalies, distributed uniformly along verticals, and their condensation on the surface: and it is possible to do the same for other systematic distributions. For long period anomalies the vertical distribution is unimportant as regards external effect : more specitically the factor $1-\pi d / l$ (see IV, $17(10)$) indicates this difference if $\pi d / l$ is considerably less than unity, d being the depth and l the length of a wave of anomaly. It is clear that in such cases the pendulum cannot discriminate as to the actual crustal distribution of anomaly of density.

But in so far as these are wide spread, their effects are removable either by Capt. Bomford's computation (IV, 24) or to a less derree in the particular case of India by Major Glennie's KH. The residuals E or $g-\gamma_{\mathrm{D}}$ are much more localised and, given their values at points close together compared with the depth of the casual anomalies, the location of these latter and their amounts could be estimatec, restricting their amounts to what can reasonably be expected to occur.

This raises the question of the proper spacing of pendulum stations. Formerly the Survey of India had no prospect of covering its area with a high density of stations. but Major Glennie's labours have leil to a much greater out-turn than was formerly possible. The work of the coming season (1929-30) will add some 20 stations, tilling a considerable gap between Bombay and Madras, and within © years there should be an average density of 1 pendulum station to every 70-mile square. For the distribution of crustal anomalies of density even this is too sparse, except for a generalised enquiry. In 19:30:3l observations with the modified Eïtvois balance--the Gravity Gradiometer - will be made in conjunction with pendulum ohserrations. It is hoped that they will locate areas of special interest fir further sturly. They will also assist in the location of an malies close to the surface, leaving the pendulum to tell the story of what is lower down. But even for this a considerably greater station-rlensity than that referred to above, viz 1 in every 70 -mil. square, will probably be necessary. It will be possible to provid these in areas which show irregularities.

Triangulation(V).--Of the two series of principal triangulation. the Chittagong series was nearly completed, two triangles being unavoidably left for the coming season. The revision of the Mong Hsat series, wherehy it was hoped to effect a junction with the triangulation of Siam, failed, and has to be repeated in the
coming season. Two geodetic model Wild theodolites were employed. Both instruments developed a serious stiffness in the working of the vertical axis, presumably as a result of tropical conditions. In the case of the one used on the Mong Hsat series, this trouble was sufficient to reduce the accuracy below the standard required for the work. The observer, failing to realise this, carried on in a vain attempt to complete the programme. This instrument has been replaced by Mr. Wild and good results are anticipated for the coming season, when a more complete junction with Siam of both the Mong Hsat and Great Salween series is being attempted. Further connections with Siam in latitudes 16° and $10^{\circ} 30^{\prime}$ are also under consideration.

Special methods have been applied to the height computations of the Chittagong series owing to the fact that observations could not on all occasions be made at the time of minimum refraction on account of bad visibility (V, Appendix).

High Precision Levelling.-Normal progress has been made in High Precision Levelling of which nearly half the total mileage is now completed. A subsidence at Ambāla of one or two inches since 1910 is revealed, following a subsidence of 7 inches in the previous 50 years (VI, 4). Further attempts to reconcile the levelling between Sukkur and Hyderābād has not led to a definite conclusion (VI, 5). Two short hill circuits with variations of 5,000 feet in height were observed to ascertain the accuracy that can be attained in such work, and to provide examples of the peculiar effect of varying gravity in such cases (VI, 6). The results have thrown doubt on the reliability of wooden staves. Any systematic error in these is of vital importance where the line is steadily rising or falling: as is essentially the case in hill circuits. Wooden staves have served to give good results in levelling in the plains, but have failed in these hill circuits. Subsequent test at Dehra has revealed considerable diumal change in length (VI, 7). For the latter purpose invar staves seem the proper alternative, and test with these will be made next season. Hitherto the Survey of India has had none of these, but 3 pairs are expected at the end of 1929 .

Effect of gravity on height determination.-In high precision levelling it has been usual to apply corrections for the difference between dynamic and orthometric height, for which purpose a formula value of gravity, uncorrected for topography, has generally been employed. In the presence of larger topographical features the gravity formula does not accord well with actual gravity. Unde: these conditions special difficulties arise : and these would not be entirely removed even if a surface value of gravity were available at every point of the line. A discussion of the case is given in VII Section I with application to the case of height of Mussoorie above Dehra, showing a correction of 0.7 feet in the orthometric height. A corresponding correction (VII Section II) is necessary when the
geoidal form is computed from deflection observations at the surface. The effects of the rigorous allowance for the variation in gravity on orthometric height above the geoid, found from spirit-levelling or from triangulation prove to be the same (VII Section III) : and so these refinements do not assist in reconciling the two. The correction appears to have only an academic interest. Without it we are in a position to express the height of a point above a definite reference figure, but not its height above sea-level, whose form can only be computed at considerable labour with certain assumptions as to the variation of gravity between the geoid and the earth's surface.

Personnel.-The personnel of the Geodetic Branch during the year is given in the following pages.
$\left.\begin{array}{c}\text { Dfhra Dūn, } \\ \text { Dec. 1929. }\end{array}\right\}$
J. de Graaff Hunter,

Divector of the Geodetic Branch.

PERSONNEL* OF THE GEODETIC BRANCH, 1928-29. Director, Geodetic Branch

Lt.-Colonel R.H. Thomas, D.S.O., R.E., from I5th October to I3th Dec. 1928. Dr. J. de Graaff Hunter, m.a., Sc. D., F. Inst. P., to 14 th October 1928 and from 14th December 1928.

COMPUTING AND TIDAL PARTY
(RECORDS AND RESEARCH)
Class I Officers.
Lt.-Colonel C.M. Thompson, I.A., in charge to 28th April 1929.
Captain G. Bomford, R.E., in charge from 29th April 1929.

Computing Section.

Upper Subordinate Service.
Mr. M. Acharya.
Mr. R.C. Ray.
Mr. M. Chatterjee.
Mr. S. Mitra.
Mr. T. N. Sharma, B.A.
Mr. A. K. Maitra, B.A.
Mr. R. K. Bhattacharya, B.A.
Mr. C.B. Madan, B.A., Geodetic Computer. Mr. K. G.P. Rao, B.A., (on probation) from 26th October 1928.

Lower Sulordinate Sorvice.
8 Computers.
Tidal Section.
Class II Officers.
Mr. R. B. Mathur, B.A., Tidal Assistant, to 29th October 1928.
Mr. D. H. Luxa, Tidal Assistant, from 30th October 1928.

Lower Subordinate Service.
II Computers.
Observatory Section. Class 11 Offcers.
Mr. R. B. Mathur, B.A.
Upper Subordinate Service.
Mr. H. C. Deb, B.A.
Mr. P. K. Chowdhury, to 3ist July 1929. Mr. H.C. Banerjea, B.A., from ist August 1929.

Lower Subordinale Service.
7 Computers.
Magnetic Observatory.
Mr. K. N. Mukerji, M.A.
1 Computer.
Office and P. \& M. Section
Upper Subordinate Service.
Mr. B. B. Lal.

Lower Subordinate Service.
2 Computers and 3 Clerks.

Drawing SEction.

Surveyor Faiz-Ullah.
6 Draftsmen.
14. PARTY (PENDULUM)

Class I Officers.
Major E. A. Glennie, D.S.O., R.E., in charge.

Lower Subordinate Service.
3 Computers etc.
15 PARTY (TRIANGULATION) Class. I Officers.
Captain G. Bomford, R.E., in charge from 17th December 1928 to 29th A pril 1929.
Mr. N.R. Mazumdar, in charge from 29th April to 1oth August 1929.
Lieut. I. M. Cadell, R.E., in charge from ioth August 1929.
Mr. B. L. Gulatee, m.A. (Cantab.), to 5th September 1929.

Class II Officers.
Mr. N. R. Mazumdar, from 29th April 1929.

Mr. P. K. Ghosh, B.A. (Cantab.), to IIth August 1929.

Upper Subordinate Service.
Mr. H. C. Banerjea, B.A., to 3ist July 1929.

Mr. L. R. Howard.
Lower Subordinate Service.
4 Computers etc.
17 PARTY (LEVELLING)
Class I Officers.
Dr. J. de Graaff Hunter, M.A., Sc. D., F. Inst. P., in charge from 15 th October 1928 to ist January 1929.
Lt.-Celonel C. M. Thompson, I.A., in charge from 29th April to 21st May 1929.

Lieut. I. M. Cadell, R.E., in charge from 2nd January to 28th April 1929, and without charge from I 3 th May to Ioth August 1929.
Mr. N. R. Mazumdar, in charge to 14 th October 1928.
Mr. H. P. D. Morton, in charge from 22nd May 1929.

[^1]17 PARTY (LEVELLING) -(contd.)
Class II Officers.
Mr. N. R. Mazumdar, to 28th April 1929.
Mr. Abdul Karim, B.A., to I4th January 1929.

Upper Subordinate Service.

Mr. L. D. Joshi.
Mr. Abdul Majid, to 31 st May 1929.
Mr. A. A.S. Matlub Ahmad, from 24th June ig29.
Mr. J. N. Kohli.
Mr. B. P. Rundev.
Mr. Muharnmad Faizul Hasan.
Mr. I. D. Suri.

Lower Subordinate Service.
18 Computers, levellers etc.
TRAINING
Class I Officers under instruction.
Lieut. R.H. Sams, B.Sc., R.E.: from Ioth March 1929.
Lieut. C. J. Price, R.E., from 9th March 1929.

Lieut. C. A. K. Wilson, R.E., from 9th April 1929.

TRAINING SCHOOL
Mr. S. F. Norman, Survey Instructor, to 28th October 1928.
Mr. L. Williams, M.B.E., Survey Instruc. tor, from 29th October 1928.

Chapter I

COMPUTATIONS AND PUBLICATION OF DATA

by Captain G. Bompord, r.e.

1. Lambert grid.-The Computing Office has been largely occupied with computations in connection with the Lambert grid for military use, and with the preparation of forms for computation in terms of the grid. For some years the method of computing surveys on active service has been the subject of discussion and experiment. In 1924 the "Minute Mesh" was introduced. This is a reference system consisting of meridians and parallels at one minute intervals: descriptive references are given by a convenient system of lettering, and all survey computations are done in spherical terms in the usual way. From the survey point of view this system has many advantages: there is no limit to the extent of the mesh, all existing data are already in terms of the mesh without conversion, and all existing methods, tables and forms are immediately applicable to work on the mesh. From the point of view of the artillery there is the objection that the range and bearing of a target cannot be computed from the simple formulæ, Distance $=$ $\left(\Delta N^{2}+\Delta \mathrm{E}^{2}\right)^{\frac{3}{2}}$, Bearing $=\tan ^{-1} \Delta \mathrm{E} / \Delta \mathrm{N}$. Also these formulæ cannot be used for traverse and other rough work without subsequent conversion of co-ordinates.

In 1926, in order to meet the requirements of the artillery, a Lambert grid* was adopted, covering 8° of latitude in the NorthWest Frontier (Origin $33^{\circ} 30^{\prime}, 66^{\circ} 00^{\circ}$). At this time it was intended to use the mesh for survey and general purposes, and the grid for artillery purposes only.

In 1928 it was realised that this duplication of reference systems was unsatisfactory, and since the artillery would not adopt the mesh, it was decided to use the grid for all arms. In view of the wellknown inaccuracy of computations in rectangular co-ordinates, it was first intended that the surveyors should continue to compute their triangulation in spherical terms, converting spherical co-ordinates to rectangular as soon as they were determined. This conversion is laborious, and in a survey exercise held in 1927 the prompt completion of all computations was found to be a considerable difficulty.

The system of computation which has now been adopted, is that

[^2]all computations are carried out directly in rectangular co-ordinates, the necessary accuracy being obtained by the conversion of observed data into grid terms, before starting computation. Thus lengths (such as bases) measured in true yards, are at once converted into "grid yards" by correction for the scale error of the projection in that latitude. Similarly, measured angles are converted into grid angles by small corrections dependent on the latitude and the easting of the points observed. The simple rectangular formula for distance and bearing are then rigorously applicable to the corrected angles and distances, and rectangular computations are as accurate as, and a little more rapid than, the usual spherical computations, with the advantage that no subsequent conversion is required.

So far as survey worlk is concerned, a grid covering 16^{3} of latitude would present little difficulty : beyond this the scale and angular corrections would begin to be inconveniently large. But the artillery do not care to have computed ranges in error by more than 1 part in 800 , nor do they care to apply a scale factor to computed ranges, and consequently the grid is at present limited to 8° belts. For training purposes, and in order to be ready for all emergencies, a system of overlapping 8° grids has been projected to cover all India and Burma, but little work has yet been done on any but the NorthWest Frontier grid (Origin $32^{\circ} 30^{\prime}, 68^{\circ} 00^{\prime}$).

Although computations on the grid are as rapid as computations in spherical, the adoption of the grid has resulted in a great deal of preparatory computation, which is still very far from complete. In addition to the preparation of special tables and forms, it will presumably necessitate the conversion of existing spherical data to grid terms in all training areas and possible war areas; for this conversion is a laborious computation which cannot prudently be left until after the outbreak of war. Preparatory work of this nature, undertaken by the Computing Office during the year under report, is described in the following paragraphs.

Table for S.-The grid distance S between two points of equal longitude whose meridian distance is m, one being on the central parallel λ_{0}, has been computed by the formula*

$$
\begin{aligned}
S=m+ & \frac{m^{3}}{6 \rho_{0} \nu_{0}}+\frac{m^{4} \tan \lambda_{0}\left(1-4 e^{2} \cos ^{2} \lambda_{0}\right)}{24 \rho_{0} \nu_{0}{ }^{2} \dagger}+\frac{m^{3}\left(5+3 \tan ^{2} \lambda_{0}-3 e^{2} \cdot e^{2} \cos ^{2} \lambda_{0}\right)}{120 \rho_{0}{ }^{2} \nu_{0}{ }^{2}} \\
& +\frac{m^{5} \tan \lambda_{0}\left(\tilde{1}+4 \tan ^{2} \lambda_{0}\right)}{240 \rho_{0}{ }^{2} \nu_{0}{ }^{3}}+\frac{m^{7}\left(60 \tan ^{4} \lambda_{0}+180 \tan ^{2} \lambda_{0}+61\right)}{5040 \rho_{0}{ }^{3} \nu_{0}{ }^{5}{ }^{3}} .
\end{aligned}
$$

This formula has been given by M. H. Roussilhe in the Proceedings of the 2nd meeting of the Geodetic and Geophysical Union. Sufficient terms have been used to give an accuracy of 0.1 yards. For this purpose the formula given is sufficient up to more than 8° from the origin, and several terms have generally been negligible.

[^3]Authorities have differed regarding the combination of ρ_{0} and ν_{0} in the denominators, and consequently the terms as far as that in m^{5} have been verified (by Mr. P. K. Ghosh) and found correct : in later terms the distinction between ρ_{0} and ν_{0} is of no consequence.

The table (43 Sur.) has been completed between lats. 28° and $36^{\circ} 30$ at 2 minute intervals.

Table for m.-In order to avoid discrepancies which may cause any possible inconvenience, it has been necessary to compute a fresh table of meridian distances on Everest's spheroid. The Survey of India Auxiliary Tables (4th edition) give values of the radius of curvature of the meridian at 10 minute intervals to one decimal of a foot, and the table of m has been built up from this. Meridian distances from the equator are given at intervals of 2 minutes to lat. 45°, and are correct to 0.01 yards. They have been checked by the Royal Geographical Society's conversion tables at $28^{\circ} 30^{\prime}$, $30^{\circ} 30^{\prime}, 34^{\circ} 30^{\prime}$ and $36^{\circ} 30^{\prime}$, with discrepancies of $0 \cdot 003,0 \cdot 002,0.002$ and 0.001 yards respectively.

An error of a yard in his meridian distance for the equator is, of course, of no interest to a triangulator on active service, but an error of this amount in the relative positions of two near stations might be very undesirable. Consequently the table of S gives tenths of yards, and since future developments can never be foreseen, it has been thought proper to make this table absolutely correct as far as it goes.

Table for scale factor.-A table (44 Sur.) has been made giving the scale error, scale factor and \log scale factor of the North-West Frontier grid, at intervals of 10 minutes of latitude.

Table of angular corrections.-A table (44 A Sur.) has been made giving the corrections necessary to convert observed angles to grid angles in the North-West Frontier grid area.

Table of convergence.-A table (44B Sur.) has been made giving the convergence for the North-West Frontier grid between longitudes 58° E. and 78° E. at intervals of 2. This table is intended for the conversion of true bearings to grid, not for use in the conversion of co-ordinates.

Table of sheet corners.-A table (44 C Sur.) has been made giving the rectangular co-ordinates of all 15 minute squares in the area $28^{\circ} \mathrm{N}$. to $36^{\circ} 30^{\prime} \mathrm{N}$. and $60^{\circ} \mathrm{E}$. to $76^{\circ} \mathrm{E}$. This table is intended for gridding spherical maps and vice versa.

Table of cutting points.-Draftsmen have found difficulty in the use of the table of sheet corners, and a start has been made with a table giving the latitude at which all 10,000 yard lines of grid northing cut every 15 minute meridian, and the longitude at which every 10,000 yard line of easting, cuts every 15 minute parallel. The construction of this table is proving laborious. It has nearly been completed between lats. $28^{\circ} \mathrm{N}$. and $36^{\circ} 30^{\prime} \mathrm{N}$., and longitudes
$41^{\circ} \mathrm{E}$. and $78^{\circ} \mathrm{E}$, but the rest of India and Burma still remains to be done. For the north and south grid lines direct computations have been made along every fourth parallel (i.e. every degree) for every tenth grid line (100,000 yards), the remaining entries being derived by interpolation. This interpolation, which involves second differences, has been carried out on a Nova-Brunsviga IVa calculating machine. A similar procedure has been followed for the east and west grid lines.

Forms.-With the co-operation of the officers of the Frontier Circle a set of forms has been prepared for use in conjunction with the Lambert grid. Some are very similar to the ordinary forms of the Survey of India, while others differ considerably. For certain observations, e.g. time and latitude, the ordinary forms will be used unmodified. The forms prepared are :-

1. Lamb Spherical to rectangular.
2. ", Rectangular to spherical.
3. " Computation of distance and bearing.
4. ., Solution of triangles.
5. " Computation of co-ordinates and heights.
6. " Computation of cutting points and heights, for semigraphical.
7. " Bearing from Sun, given altitude.
8. ", Bearing from Polaris, given time.
9. ", List of co-ordinates.
10. " Descriptions of points for triangulation.
11. " Angle book.
12. " Progress and record.
13. , Bearing from Sun, given time.

20 . ". Traverse field book.
21. " Traverse set-up.
22. ", Northing, easting and height by logs.
23. .. Northing and easting by tables.
21. ., Traverse syopsis.

Detailerl specimens of tho above forms have been prepared for the pross, but tiley havp not yet been printerl.
 from that of the orisin. the conversion of spherical co-ordinates to rectandar on the usnal form may necessitato the use of 8 -figure logarithas, whese use is slow and which may not be available. Thus at 8 from the rigin, the use of 7 -figure \log s may introluce an firw of two or there touths of a yard. which may cause appreriable error in the mutual distance of two near points. Methoris for remedying this difficulty, without introducing more than our origin in the same latiturle, are now under consideration. In the first methorl, which is being developed by Mr. H.C. Ieva, the eastings are tabulated of all points at intervals of 1 minute of latitude, along a certain meridian RT (see Chart I.) distant (say)

Conversion of Coordinates

$=$ Spherical
$\ldots \quad$ Grid
$100,000^{\prime \prime}$ from O, the origin. The distances $O L$ and $Q N$ are also tabulated. Then for any point P the easting $\mathrm{LM}=\mathrm{LN} \cdot \mathrm{L}_{\mathrm{P}} / 100,000$ + (a small tabulated correction), where L_{P} is the difference of longitude between P and O. Similarly, the northing of $P=O L$ $+\mathrm{QN} \cdot \mathrm{L}_{\mathrm{p}}{ }^{2} /(100,000)^{2}+($ a small correction $)$. If a multiplying machine is available, this computation is very rapid, involving no tables but the special tables provided. Without a machine 8-figure logarithms are required, but no trigonometrical tables.

In the second method, which is being developed by Mr. K. G. P. Rao, the co-ordinates and convergence are tabulated at sub-origins 4° apart. The co-ordinates of any point relative to the nearest sub-origin can be computed with 7 -figure logarithms in the usual way, and can then be converted to the principal origin by the ordinary formulæ for change of axes and origins in rectangular coordinates. Combination of the original conversion with the change of axes, results in some simplification of the form.

The first of these two methods is likely to be the most satisfactory, if a calculating machine is available, and possibly so, if 8 -figure logarithms are available. The second method constitutes a standby for use in other circumstances. As mentioned above it is to be hoped that all necessary conversion of co-ordinates will be done at leisure in time of peace, and that hardly any will be necessary for war. Nevertheless, to avoid complicating the work of the field parties, it has been decided to limit the longitudinal extent of grids to 16°, except that of the N. W.F. grid in the distant parts of which there are no data to convert.

Mr. R. C. Ray has been in charge of all the computations in connection with the Lambert grid.
2. Triangulation : Best hour for horizontal angles.Triangulation signals generally appear to be more steady by night than by day. a fact which leads to the conclusion that the night is probably the best time for horizontal angles. At the same time night work is often inconveniont. it is apt to be slower than day Work, amd analogy with vertical angles shows that mere steadiness is not in itself a proof of reliability.

From a theoretical point of view, closer examination shows that nient may be expected to be the best time. Just as abnormal motical refraction is caused by an abormal vertical air density gradient. which in turn is caused by an abnormal temperature gradient so is horizontal refraction caused by a horizontal density or temprature gradiont. By day, such abnormalities are caused by lot air vising from the ground, and they result in an unsteadiness of the sinal. When the ray is close to the groumd. the unsteadiness may best great at midday that observations are clearly impossible. Under other circumstances the unsteadiness may be sufficiently small to justify the hope that the casual errors of bisection will be
eliminated in the mean of a large number of readings, but there remains the risk that some accident in the underlying ground may cause a more persistent rising of hot air on one side of the ray than on the other, with consequently a persistent tendency to error in all intersections. At night there are no streams or eddies of rising air, and, unlike a vertical density gradient, a large horizontal gradient is only in stable equilibrium in the immediate neighbourhood of some source of heat or cold. Thus, it may be expected that for rays close to the ground night observations should be better than day, and that for rays in high hills there should not be much difference, with perhaps a slight preference for night. It is to be remarked that when a ray grazes the side of a cliff or sloping hill the horizontal refraction is likely to be of opposite sign by night and by day, and consequently observations of such rays should be made at both times; a good cancellation can hardly be expected, but at least the weakness should be shown up.

To verify theory, abstracts have been made from the observations of four series of triangulation each representing a different type of country. Observations have been classified as morning (sumrise to 11 hours), afternoon (16 hours to sunset) and night: in India primary observations have seldom been made between $11 \& 16$ hours. From the measures so classified, the morning, afternoon and night triangular errors have been found for 6 or 7 triangles in each series. From each triangular error the probable error of a single measure has been deduced by the formula, $l=\epsilon \sqrt{1 / n^{2}+1 / n^{2}{ }_{2}+1 / n^{2}{ }_{3}}$, where E is the probable value of the triangular error, ϵ is the probable error of an angle, and n_{1}, n_{2}, n_{3} are the number of measures of each angle. The results are given in Tables 1 to 4 . As regards night versus afternoon, night is seen to be markedly the best in the very low rays over the bare ground of the Great Indus series: in the other three series the afternoon is slightly the better, but not so much that the fact can be considered well established. Morning observations are wanting in the two low series: in the jungle covered hills of the Great Salween they appear to be slightly the best, and in the harren liills of the Kalat Longitudinal they are much the worst. The evilence is uot sufficient to be conclusive: so far as it cons it inlicat's that moming observations are safe in jungly hills, and that they are dancerous in bare hills, as is not unreasonable. In barem plains there is often mirage in the morning, and observations at that time would obviously be bad.
3. Hayford deflections.-Several hundred Indian deflection stations still remain, for which no topographical or isostatic reduction has yet been made. The value of these reductions does not depend on the acceptance of the existence of porfect isostasy, for the effect of visible topography must be eliminated, whatever system is adopted. During the past two years occasional opportunities have arisen for undertaking a little of this work, but no
extensive progress has been made. The results are put on record in Table 5.

It is intended to publish typewritten lists giving full details of the heights of zones and compartments of these and other gravity and deflection stations for which such data have not yet been published.
4. Computation forms and Tables.-The method of computing astrolabe observations has been examined in detail, and a number of improvements introduced. For example, the small nutation corrections, which have hitherto been applied to each star individually, are now applied as a correction to the final results. Similarly, when interpolating declination and R. A. from a 10 day ephemeris, it is convenient to ignore the fraction of a day which arises from the difference between the longitude of the place of observation and that for which the ephemeris has been prepared; this is now the practice, and the resulting error is corrected at the end. Form 4 Ast. has been remodelled and a new form 12 Ast. prepared.

In addition to the Lambert tables referred to in para 1, five other charts and tables have been prepared, in connection with astrolabe, longitude, and pendulum computations.
5. Triangulation and levelling pamphlets.-The compilation of the Mesopotamian triangulation has now been completed, although all the pamphlets have not yet been published. The compilation of triangulation in Persia has been begun. 20 Indian pamphlets covering 32 degree sheets have been prepared for reproduction by photozincography to meet shortage of stock.

19 small pamphlets totalling about 1,729 miles of secondary levelling data have been reproduced by Gestetner. One primary pamphlet has been reprinted, and the data of nine lines totalling about 1,063 miles have been printed in the form of addenda to existing primary pamphlets.
6. Drawing Section.-Six Indian and seven Mesopotamian degree sheet triangulation charts have been drawn, and one levelling chart. 17 charts have been prepared in illustration of Geodetic Reports Vols. III and IV. About 70 other indexes, diagrams and figures have been prepared for other purposes.
7. Miscellaneous publications.-Lieut-Colonel C. M. Thompson has compiled a pamphlet describing the formulio and methols of computation used in connection with the Lambert grid. He has also compiled notes on Astronomy and Astronomical Computations for the use of officers under instruction.

A new edition of the Topographical Handbook, Chapter III (Triangulation) has been prepared, but not yet sent to press. Geodetic Reports Volumes III and IV, and Professional Papers 22 and 24 have been seen through the press.

TABLE 1．－Kalã Longitudinal Series．Barren hills．

Triangle		1	2	3	4	5	6	7	
吕	E n_{1} n_{2} n_{3} f	$\begin{array}{r} 2 \cdot 30 \\ 17 \\ 24 \\ 18 \\ 5 \cdot 82 \end{array}$	$\begin{array}{r} 2 \cdot 62 \\ 42 \\ 28 \\ 21 \\ 8 \cdot 00 \end{array}$	$\begin{array}{r} 0 \cdot 44 \\ 29 \\ 38 \\ 26 \\ 1.40 \end{array}$	$1 \cdot 00$ 32 28 22 2.98	$\begin{array}{r} 1 \cdot 07 \\ 36 \\ 19 \\ 30 \\ 3 \cdot 18 \end{array}$	$\begin{array}{r} 0 \cdot 36 \\ 34 \\ 31 \\ 16 \\ 1 \cdot 02 \end{array}$	$\begin{array}{r} 1 \cdot 17 \\ 28 \\ 29 \\ 21 \\ 3 \cdot 41 \end{array}$	
$\begin{aligned} & \text { 믕 } \\ & \text { 鞄 } \\ & \stackrel{4}{4} \end{aligned}$	E n_{1} n_{2} n_{3} $\boldsymbol{\epsilon}$	\ldots \ldots \ldots \ldots \ldots	$\begin{array}{r} 3 \cdot 37 \\ 2 \\ 26 \\ 19 \\ 4 \cdot 38 \end{array}$	$\begin{array}{r} 0.01 \\ 11 \\ 14 \\ 18 \\ 0.0: \end{array}$	$\begin{array}{r} 1 \cdot 44 \\ 10 \\ 16 \\ 94 \\ 3 \cdot 19 \end{array}$	$\begin{array}{r} 0 \cdot 16 \\ 2 \\ 20 \\ 27 \\ 0 \cdot 21 \end{array}$	$\begin{array}{r} 0 \cdot 34 \\ 12 \\ 16 \\ 16 \\ 0 \cdot 74 \end{array}$	$\begin{array}{r} 0 \cdot 50 \\ 16 \\ 10 \\ 23 \\ 1 \cdot 10 \end{array}$	
	E n_{1} n_{2} n_{3} $\mathbf{6}$	0.09 58 28 65 0.34	$0 \cdot 16$ 64 68 57 0.73	0.87 64 80 60 $4 \cdot 11$	$0 \cdot 21$ 51 64 55 0.91	$\begin{array}{r} 0.58 \\ 50 \\ 55 \\ 52 \\ 2.42 \end{array}$	$\begin{array}{r} 0 \cdot 25 \\ 40 \\ 62 \\ 53 \\ 1 \cdot 04 \end{array}$	0.97 67 49 34 3.81	

TABLE 2．－Great Indus Series．Flat burven plains．

Triangle		1	2	3	4	5	6	7	8	
$\begin{aligned} & \text { g } \\ & 0 \\ & \text { E } \\ & \text { 范 } \\ & 4 \end{aligned}$	E	$0 \cdot 31$	1.55	$0 \cdot 59$	1－45	$0 \cdot 82$	$0 \cdot 19$	0.41	0.63	
	D_{1}	14	10	17	11	12	10	11	11	E
	n_{2}	$1!$	17	10	7	13	15	11	11	－
	n_{3}	¢	9	14	14	18	11	9	11	显 1
	ϵ	0.57	2.98	1－23	$2 \cdot 63$	$1 \cdot 76$	0．：37	0.76	$1 \cdot 20$	出
烒烒	E	$0 \cdot 51$	$0 \cdot 16$	0．21	$0 \cdot 24$	$0 \cdot 04$	$0 \cdot 16$	$0 \cdot 09$	$0 \cdot 19$	
	n_{1}	17	19	15	22	18	22	20	－21	¢
	n_{2}	14	14	25	27	17	18	20	21	\bigcirc
	D_{3}	24		20	17	12	19	21	20	F．
	ϵ	23	$0 \cdot 40$	0.63	$0 \cdot 64$	0.09	0． 41	$0 \cdot 23$	$0 \cdot 50$	${ }^{\sim}$

Chap．i．］COMPUTATIONS \＆PUBLICATION OF DATA
TABLE 3．－－East Calcutta Longitudinal Series．Flat jungle plains．

Triangle		1	2	3	4	5	6	
\％¢d\＃	E		$0 \cdot 79$	$0 \cdot 24$	$0 \cdot 20$	0.76	$0 \cdot 40$	
	n_{1}	17	20	23	\bigcirc	18	14	日
	n_{3}	28	19	25	20	12	11	\％
	n_{3}	20	27	16	13	10	18	E 1
	ϵ	$0 \cdot 24$	2．12	$0 \cdot 63$	$0 \cdot 48$	1－56	0.86	岕
	E	$1 \cdot 15$	0.09	0.09	0.81	0.53	0.78	
	n_{1}	14	17	12	9	11	18	¢
	D_{2}	18	12	5	5	19	20	三
	n_{3}	11	8	11	19	20	15	品 11
	ϵ	2．46	$0 \cdot 17$	$0 \cdot 15$	1－34	1.21	1.88	\ddot{z}^{4}

TABLE 4．－Great Salween Series．Jungle hills．

Triangle		1	2	3	4	5	6	
年	E n_{1} n_{2} n_{3} f	$\begin{array}{r} 0 \cdot 03 \\ 16 \\ 18 \\ 14 \\ 0 \cdot 07 \end{array}$	$\begin{array}{r} 1 \cdot 00 \\ 12 \\ 7 \\ 17 \\ 1.87 \end{array}$	$\begin{array}{r} 0 \cdot 17 \\ 12 \\ 21 \\ 29 \\ 0 \cdot 41 \end{array}$	$\begin{array}{r} 0.55 \\ 12 \\ 19 \\ 18 \\ 1.26 \end{array}$	0.15 16 18 14 0.34	$1 \cdot 26$ 12 14 14 2.94	
	E n_{1} n_{2} n_{3} e	$\begin{array}{r} 0 \cdot 12 \\ 8 \\ 7 \\ 18 \\ 0 \cdot 21 \end{array}$	$\begin{array}{r} 0 \cdot 12 \\ 27 \\ 11 \\ 17 \\ 0 \cdot 28 \end{array}$	$\begin{array}{r} 0.54 \\ 29 \\ 15 \\ 26 \\ 1.44 \end{array}$	$\begin{array}{r} 0 \cdot 43 \\ 21 \\ 21 \\ 24 \\ 1.16 \end{array}$	1.37 28 24 23 3.99	$\begin{array}{r} 0 \cdot 21 \\ 11 \\ 9 \\ 29 \\ 0.43 \end{array}$	
菏	m n_{1} n_{2} n_{3} f	1.61 50 45 32 i） 94	0.02 37 43 38 0.07	$\begin{array}{r} 0.24 \\ 35 \\ 42 \\ 34 \\ 0.84 \end{array}$	0.19 29 32 36 0.62	0.56 34 38 45 2.01	0.22 54 40 22 0.74	

TABLE $\mathbf{\text { ®.-Hayford deflections. }}$

Sheet	Statioa		Everest's Splueroid			Deflection Everest's Spheroid		Detlection International Spheroid		Compated Hayford Deflection		Anomaly International Spheroid	
			Latitude	Longitude		Meridian	P. V.	Meridian	P. V.	Meridian	$\mathrm{P} . \mathrm{V}$.	Meridias	P. V.
			- "	"'"		"	" 7	"	". ${ }^{\text {\% }}$	"		"	$.4 \mathrm{~W}$
38 P	Umarkhel	H.S.	322531.07	$711520 \cdot 79$	3036		13.7 W		$10 \cdot 0 \mathrm{~W}$		$5 \cdot 6 \mathrm{~W}$	$2 \cdot 5 \mathrm{~S}$	
39 D	Dnmb	h.s.	28 1521.09	$6814 \begin{aligned} & 9 \cdot 96 \\ & 695030 \cdot 68\end{aligned}$	183 282	$2 \cdot 8 \mathrm{~N}$		1.4 S		$1 \cdot 1 \mathrm{~N}$	0.70	$2 \cdot 5 \mathrm{~S}$ \cdots	$6 . \dddot{8} \mathrm{~W}$
39 H	Datwoula	T.s.	$25 \div 012 \cdot 87$	$695030 \cdot 68$	282	...	$12 \cdot 2 \mathrm{~W}$...	$7 \cdot 5 \mathrm{~W}$		0.7 W	...	6.8 W
		S	27518.74	$682614 \cdot 75$	215		$6 \cdot 6 \mathrm{~W}$		1.2 W	\cdots	0.9 W		0.3 W
¢ 40	Samdari	H.S.	254859.55	$723+20 \cdot 84$	846	$0 \cdot 0$		$3 \cdot 3 \mathrm{~s}$		0.1 S		3.2 S 2.6	
46 A	Dhämanta	T.S	$23328 \cdot 40$	$723056 \cdot 82$	397	$5 \cdot 8 \mathrm{~N}$..	3.4 N	..	0.8 N	...	2.6 N	
46 F	Ghoriraio	H.S.	$225211 \cdot 17$	$73 \quad 2125 \cdot 45$	323	$3 \cdot 1 \mathrm{~N}$	\cdots	0.9 N		0.8 N	\ldots	0.1 N	\cdots
40 G	Tarbhin	$\xrightarrow{\text { S }}$	$\begin{array}{cc}21 & 0 \\ 16 & 34.13\end{array}$	$\begin{array}{cccc}73 & 3 & 49 \cdot 79 \\ 7+ & 77 & 56 \cdot 35\end{array}$	140 2544	$5 \cdot 8 \mathrm{~N}$		$4 \cdot 7 \mathrm{~N}$		0.3 S	0.7 W		8.78
47 L	Karabgati	H.s.	$\begin{array}{ll}16 & 734 \cdot 87\end{array}$	$744756 \cdot 35$	2544		6.9 E		$8 \cdot 1 \mathrm{E}$		0.7 W		8.8
53 J	Nagr Tibba	H.S.	303511.57	$\begin{array}{lll}78 & 9 & 9.57\end{array}$	9915	$30 \cdot 5 \mathrm{~N}$	$20 \cdot 8 \mathrm{E}$	25.1 N	20.2 E	16.7 N	14.2 E	8.4 N	6.0 E
53 J	Bauog	H.S.	30283691	$78 \quad 0 \quad 55 \cdot 96$	7 ± 33	$32 \cdot 7 \mathrm{~N}$	$23 \cdot 3 \mathrm{E}$	$27 \cdot 3 \mathrm{~N}$	$22 \cdot 8 \mathrm{E}$	15.9 N	...	11.4 N	
-3 J	Masoririe Dome Ubservatory	U S.	$302740 \cdot 55$	$73 \quad 41741$	6937	$36 \cdot 5 \mathrm{~N}$	$25 \cdot 5 \mathrm{E}$	31.2 N	25.0 Hi	14•8*N	...	16.4 N	...
53 J	Jharipāai	h.s.	$302310 \cdot 05$	$78 \quad 5 \quad 20.92$	5150	52.5 N	30.8 E	47.2 N	$30 \cdot 2 \mathrm{E}$	28.9 N	...	18.3 N	\ldots
53 J	Spur Point	h.s.	$302437 \cdot 72$	$78.5855 \cdot 96$	3850	53.2 N	28.5 ${ }^{29} 7$	47.9 N	27.9 E 29.1 E	28.9 N	\ldots	$19 \cdot 0 \mathrm{~N}$	\ldots
53 J	Rājpar	h.s.	$302356 \cdot 83$	78 5 59•89	3500	$47 \cdot 7 \mathrm{~N}$	29-7 E	$42 \cdot 4 \mathrm{~N}$	$29 \cdot 1 \mathrm{E}$	26.4 N	...	16.0 N	...
72 E	Mahādeo Pokra	H.S.	$274131 \cdot 5$	$853119 \cdot 9$	7095	37.9 N	\ldots	$32 \cdot 9 \mathrm{~N}$	\cdots	$17 \cdot 5 \mathrm{~N}$...	15.4 N	...
72 E	Kaulia	H.S.	$274858 \cdot 6$	$851420 \cdot 7$	7051	$33 \cdot 1 \mathrm{~N}$	\ldots	$29 \cdot 1 \mathrm{~N}$...	14.6 N	...	14.5 N	...

* Revised Compatation.
For the first 9 stations the heights were estimated by Mr P. K. Ghosb, and for the rest by Mr. Abdal Karim.

Chapter II

OBSERVATORIES

by Captain G. Bompord, r.e.

1. Longitude.--The regular record of the longitude of Dehra Dūn was maintained by bi-weekly observations for local time with the bent transit, and daily reception of the $8^{\mathrm{h}} 01^{\mathrm{m}}$ G.M.T. Bordeaux and $9^{\text {h }} 55^{\mathrm{m}}$ G.M.T. Rugby wireless time signals. The time observers were Mr. R.B. Mathur and Computers Jagdish Behari Mathur and Prem Narain. Cloudy weather caused exceptionally long breaks in the time observations in July, and some failures of wireless reception also occurred at this time. The resulting values of the longitude are given in Table 1, in which a single value is given by the association of each observation of local time with the wireless signal received at the least time interval from it, i.e. generally during the preceding afternoon, and occasionally on the following afternoon. Results are given up to July inclusive, after which the corrections to the times of emission are not yet available. Individual night's observations have not been smoothed to give a more uniform clock error. The reputed times of emission of the wireless signals have been corrected by the amount given in the " Admiralty Notices to Mariners", and by the demi-definatif corrections of the "Bulletin Horaire". When deducing the longitude from the Bordeaux signals, a correction of $+0^{5 \cdot} 02$ has been added to the reputed Greenwich time of emission, on account of this having been deduced on the assumption that the longitude of Paris is $0^{11} 9^{\text {m }} 20^{\text {s }} 93$, whereas the more recent value is $0^{\text {h }} 9^{\prime \prime \prime} 20^{\circ} \cdot 91$. The speed of propagation has been taken to be $300,000 \mathrm{~km}$. per second.

Determinations of the value of one division of the level of the bent trunsit at different times have given very different results. In future it is intended to make monthly determinations of the bubble value, and to take special care to keep the level correction small, and of variable sign. In the past, determinations have been rather infrequent, but a comparison between individual measures of the loagitude, and the level correction of the transit observations on which they are based, can scrve as a rough basis for a determination of the level correction. All the work done with the bent transit since October 1926 has been analysed in this way, and the following statement shows the results. The value which had been used since Oct. 1926 was 1 division $=0 \cdot 155$.

Value accepted before Sep	1926	...	$0 \cdot 130$	
Deduced from observations	1-10-26 to 6-10-26	..	$0^{8} \cdot 12$	weakly determined.
	7-10-26 to 1-12-26	\ldots	018. 148	
Babble Tester Feb. 1927		..	$0^{8.155}$	
Deduced from observations	1-12-26 to May 1927	...	0*.155	weakly determined.
" " "	Oct. to Nor. 1927	...	08. 155	is satisfactory.
	Dec. 1927 to Mar. 1928	...	$0^{18} \cdot 12$	
Bubble Tester Jonly 1928		...	$0^{0} \cdot 122$	
Dednced from observations	Oct. 1928 to April 1929	...	$0^{5 \cdot 113}$	
Bubble Tester Sept. 1929.	$0^{5} \cdot 133$	

It seems clear that the value of one division changed in about November or December 1927. No change has been made in the adopted value of $0^{3} \cdot 155$ before 1-12-27, but subsequent results up to 31-7-29 have been recomputed with the value $0^{s} \cdot 120$. The values given in last year's report (Volume IV) include this correction, as delay in printing has made it possible for them to be corrected in the proofs. There can be no doubt that the spirit-level is one of the least satisfactory parts of the transit instrument.

Monthly mean values of the longitude during the current year are given below. The accepted value derived from the International Project of 1926 is $5^{\text {h }} 12^{\mathrm{m}} 11^{\text {s. }} 79$.

	Bordeaux		Rugby
October 1928	$5^{\text {h }}$	12^{m}	$11^{\mathrm{s}} \cdot 72$

Chart II shows the variation since 1926 .
The curve is rather irregular, but the changes cannot definitely be ascribed to anything but instrumental error.
2. Riefler clock.-The clock has been running steadily, see Table 2 , except between 7 th and 18 th May when the pressure was adjusted to an unsuitable figure. Leakage of the case has enforced a correction to the pressure every three or four months, but less trouble has been caused on this account than during the previous year. The temperature control has worked regularly, but it has not been possible to provent the usual rise during the hottest months.

It has hitherto been impossible to use Riefler for the reception of rhythmic signals on account of the irregularity of its seconds. This irregularity has been partly without system, and partly in the form of alternate seconds being slightly too long and too short, the result of dislevelment. While passing through Dehra, Major Glennie (in charge of the pendulum party) was able to correct this
Chart II

$11^{9} \cdot 70$

levelling by comparing Riefler against the swinging of his pendulums. It has since been possible to use Riefler for the reception of time signals, without using another clock as an intermediary.
3. Latitude.-A few observations of the latitude of Dehra Dūn were made with Zenith Telescope No. 1. The results are given in Table 3 where two previous determinations are given for comparison. They are inadequate for any useful determination of the variation of latitude, but with the exception of the January observation, changes appear to be in fair agreement with figures obtainable by extrapolation from the position of the pole in previous years. It is hoped that these few observations may constitute a preliminary to an adequate series of observations during the current year.

4. Fortnightly variation of latitude.-Analysis of the values of the latitude of Dehra Dūn, which were obtained by the prismatic astrolabe in October and November 1926, shows a well marked variation with the moon's age, there being two periods per month. The results on which the analysis is based are given in Geodetic Report Vol. III (1926-27) page 40. The figure shows the result of meaning by every 2 days of the moon's age. The observations made between November 5-6 and 13-14 have been excluded from the mean, as bad weather caused considerable interruption of the programme, and the results were exceptionally irregular. Each point on the diagram represents about 10 series of observations each lasting about two hours, and each giving probable errors of about $0^{\prime \prime} \cdot 3$. The probable error of each point in the diagram is thus at least $0^{\prime \prime} \cdot 1$, and the smoothness of the curve must partly be due to chanen.

Attention has been drawn by A. Gougenheim * to a similar variation at Algiers, also in October and November 1926. The variation shown in the figure is apparently in phase with that at Algiers, but of about one third the amplitude.

Prof. H. T. Stetson \dagger has described a variation of latitude with the moon's hour angle. The Dehra Dūn observations have been

[^4]classified in this way, but have not proved sufficient to show his very small variation.
5. Gravity.-Dehra Dūn is the base station of the Indian Gravity Survey. Determinations of the values of gravity at Dehra by comparison with European stations, have given extraordinarily variable results (see Chapter IV). It has been suggested that changes in the value of gravity at Dehra are a possible cause of this, and in order to detect any variation with an approximately annual period, a series of 7 observations has been made in the observatory by Mr. R.B. Mathur during the last year. The results are given in Table 4, where the values given are of course based on the assumption that the pendulums have remained unchanged. Pendulum No. 137 has given much less regular results than the other three, and its determinations have been excluded from the mean values. With the exception of August 1929 the mean value is satisfactorily constant, and may be considered to disprove the existence of any annual variation competent to explain the discrepancies in the fundamental determinations. The August 1929 value is rather surprisingly wide, but cannot be held to indicate any periodic variation.
6. Standards of length.-A mural base has been constructed in the base line alley. The existing equipment consists of a 24 -metre comparator of great accuracy, but which is not well adapted for ordinary rough work, and which can only standardize tapes whose lengths are multiples of 4 metres. There also exists a rough 100 foot standard on the floor of the alley, but it also is rather inconvenient in use, and can deal only with multiples of 10 feet.

The new mural standard has marks at every 10 feet, the first interval being subdivided to every foot. There are also marks at every four metres, measured backwards from the 80 foot mark, with intermediate marks at the first three metres. The 24 metre mark is thus within 3 inches of the one foot mark, and the 100 foot base can readily be brought into terms of the fundamental metre standards. In addition to the row of brass plugs spaced as ahove, a 100 froot and a 12 metre invar tape are permanently stretched within a couple of inches of the plugs, either of which can be used as a standard. It is expected that these tapes will prove a more permanent standard than the plugs in the wall, but the plugs should prove useful for many purposes. The plugs and standard tapes lie in a narrow tough where they can be submerged in running water. Realins:aw matr !y means of movable microscopes which can be put in position as recjuired.

The plues have now heen fixed and the marks cut, but the final stanlardization has not yet been completed. Arrangements may eventually he male to control the temperature of the rumning water, but the necessary apparatus has not yet been provided.
7. Magnetic observations. -The usual programme of
magnetic observations was carried out, comprising a continuous magnetographic record of declination, horizontal force and vertical force, daily observations of dip, and bi-weekly observations of declination and horizontal force.

The magnetic observatory is usually flooded in August, but this year no flooding occurred.

The mean values of the magnetic elements at Dehra Dūn observatory in 1928 were :-

| Declination | E $1^{\circ} 18^{\prime} \cdot 5$ |
| :--- | ---: | ---: |
| Dip | $\mathrm{N} \quad 45^{\circ} 31^{\prime} \cdot 8$ |
| Horizontal Force | $\cdot 32940$ C.G.S. |
| Vertical Force | $\quad 33554$ C.G.S. |

Table 5 gives the monthly mean values of the distribution constants and magnetic moment of Magnet No. 17.

Table 6 shows the monthly mean values of the elements for 1927 and 1928, and the annual changes for that period. The mean hourly deviations from the monthly means are given in Tables 7 to 10. Table 11 gives the classification of the magnetic character of all days of 1928 . The symbols $\mathrm{C}, \mathrm{S}, \mathrm{M}, \mathrm{G}$, and VG there used are those which have been employed in all the Survey of India records. They correspond with the International (De Bilt) classification somewhat as follows :-

> 0 De Bilt $=$ C and part of S.
> 1 De Bilt $=$ Part of S , and M.
> 2 De Bilt $=\mathrm{G}$ and VG.
8. Seismograph and meteorological observations.-

The Omori seismograph was in operation throughout the year in its new position in the Haig Observatory, where it lies East and West; in the Burrard Observatory it used to be North and South. An exceptionally large number of earthquakes was recorded; many were very slight and indistinct, but the number of large shocks was also exceptional. The increase in small shocks may possibly be due to the better working of the instrument on account of a new pivot bearing having been fitted when it was moved: or it may be a peculiarity of the locality, that an East and West instrument receives more small shocks than one lying North and South. Table 12 gives details of all the earthquakes recorded.

A full programme of meteorological observations has been undertaken since February, the observations being made at $8 \mathrm{a} . \mathrm{m}$. and communicated to the Meteorological Department.
9. Miscellaneous work.-All theodolites, levels and other delicate instruments in the store at Dehra Dūn have been transferred to the care of the Observatory Section, where they can receive a certain amount of attention and inspection before issue, although the accounting work which results is an unwelcome
addition to the duties of the officer in charge of the observatory. It will probably be possible to make other arrangements during the current year.

The levels of the levelling party were inspected on their return from the field, and the 10 foot field tapes were standardized.

A small test was made of the Wild telemeter. The test took the form of a traverse of 660 metres, consisting of 6 legs between 70 and 150 metres in length, which closed with an error of 1 in 3,000 . The test indicates that the instrument is accurate enough for most traverse purposes, but does not assert that even better work may not be possible after some practice in the use of the instrument.

The Saturday morning course of instruction of about 12 of the geodetic and other computers of the party, was continued during the cold weather of 1928-29. Most of the senior computers of the Computing and Observatory Sections are now conversant with practical triangulation, traversing and levelling. A little instruction in star observations has also been given.

Four Hunter Short Bases (see Vol. IV, Chap. II, para 6) have been constructed and standardized, for the use of the Frontier Circle. One has been lent to H. R. H. the Duke of Spoleto for his expedition to the Kara-koram.

A Tungar rectitier has been installed in the Hennessey Observatory for charging accumulators. Water has been laid on to the Hennessey, Hunter and Burrard Observatories.

TABLE 1.-Longitude of Dehra $D \bar{u} n$, and its variation from accepted value, as determined from reception of wireless time signals from

Bordeaux and Rugby.

Date Greenwich	Bordeaux		Rugby	
	Longitude in time	Observed value minus accepted value*	Longitude in time	Observed valne minu.s accepted value*
1928	$h \quad m \quad s$	s	$4 \quad m$	s
Oct. 1	$5 \quad 12 \quad 11.80$	+ 0.01	$5 \quad 12 \quad 11.93$	$+0.14$
5	11.59	- 0.10	11.63	-0.16
9	11.72	- 0.07	11.70	- 0.09
12	11.83	+ 0.04	11.86	$+0.07$
16	$11 \cdot 65$	- 0.14	11.66	- 0.13
19	$11 \cdot 67$	- 0.12	11.75	- 0.04
26	11.79	$0 \cdot 00$	11.79	$0 \cdot 00$
30	$11 \cdot 62$	$-0 \cdot 17$	11.64	-0.15
Nov. 2	$11 \cdot 66$	- $0 \cdot 13$	11.71	- 0.08
6	11-68	- 0.11	11.72	- $0 \cdot 0.17$
9	$11 \cdot 72$	- 0.07	11.77	- 0.02
13	$11 \cdot 63$	-0.16	$11 \cdot 67$	- 0.12
16	$11 \cdot 59$	-0.20	11.61	- 0.18
21	$11 \cdot 73$	- 0.06	11.78	- 0.01
Dec. 3	11.59	-0.20	11.62	- 0.17
8	11.67	- 0.12	$11 \cdot 67$	- $0 \cdot 12$
14	$11 \cdot 86$	+ 0.07	11.82	+ 0.03
18	$11 \cdot 79$	0.00	11.76	- 0.03
$1929{ }^{21}$	11.82	$+0.03$	11.78	- 0.01
Jan. 1	11.50	+ 0.01	11.87	+ 0.08
4	11.76	- 0.03	11.75	- 0.04
9	11.81	+. 0.02	11.83	$+0.04$
15	11.82	+ 0.03	11.83	+ 0.04
$1!$	11.78	-0.01	11.81	+ 0.02
22	11.76	- 0.03	11.88	+ 0.09
28	11.84	$+0.05$	11.90	+ 0.11
F, \% , 1	11.81	+ 0.02	11.85	+ 0.06
f	11.84	+ 0.05	11.86	+ 0.07
$!$	11.82	$+0 \cdot 03$	11.88	+ 0.09
1.	$11 \cdot 83$	$+0.04$	11.83	$+0.04$
$1: 1$	$11 \cdot 85$	+ 0.00	11.86	+ 0.07

TABLE 1.-Longitude of Dehra Dün, and its variation from accepted value as determined from reception of wireless time signals from Bordeaux and Rugby-(contd.).

* Accepted valne of lungiturle is $5^{11} 12^{m} 11^{*} 79$ (as determined in 1926).

TABLE 2.-Temperature and pressure of Riefler clock No. 450, and its error and rate, by bent transit instrument, at 20 hours

Indian standard time, 1928-29.

Jate	Error	Observers	During preceding period			Remarks
			Rate* per day	Pressure	Temperature	
1328	\cdots s		s	mm	C	
. 1	-1 02.89	P. N.	- 0.16	586	$28 \cdot 0$	
5	$03 \cdot 10$	"	- 0.05	586	$27 \cdot 7$	
9	03.71	,	- 0.16	586	$27 \cdot 4$	
12	04.15	"	- 0.14	586	$27 \cdot 0$	
16	$04 \cdot 19$	"	-0.01	585	$26 \cdot 8$	
19	04.48	",	- 0.10	584	$26 \cdot 7$	
26	$05 \cdot 07$	"	- 0.03	584	$26 \cdot 3$	Pressure reduced to 556
30	04.58	"	+ 0.12	566	$26 \cdot 7$	mm. at 3 p.m. on $28 t h$ Oct. 1928.
T. 2	03.97	"	+ 0.20	560	$26 \cdot 5$	
6	$03 \cdot 30$		+ 0.17	560	$26 \cdot 5$	
9	0:2.80	"	+ 0.17	560	$26 \cdot 6$	
13	$02 \cdot 10$	"	+ $0 \cdot 18$	560	$26 \cdot 5$	
16	01.82		+ 0.09	560	26.7	
21	01.30	R. $\mathrm{B}_{\text {, M. }}$	+ $0 \cdot 10$	560	$26 \cdot 6$	
3	00.42	"	$+0.08$	561	26.5	
8	00.53	J. B.	- 0.02	562	26.6	
14	$00 \cdot 50$,	- 0.01	561	25.8	
18	00.08	,',	$+0.11$	560	$\because 5 \cdot 6$	
21	00.07	"	+ 0.00	. 565	$26 \cdot 6$	
929		"				
1	$057 \cdot 64$		+ 0.22	561	$26 \cdot 6$	
4	$56 \cdot 74$	"	+ 0.29	564	$26 \cdot 7$	
9	55.48	,"	+ 0.26	564	$25 \cdot 9$	
15	53.86	"	+ 0.27	565	$26 \cdot 4$	
19	$52 \cdot 84$,"	$+0.24$	558	26.3	
22	$52 \cdot 43$	"	$+0.14$	572	$26 \cdot 2$	
28	51.99	"	+ 0.08	577	26.7	
1. 1	81.39	",	+ 0.15	572	$26 \cdot 6$	mm . nt $7 \mathrm{p} . \mathrm{m}$. on 30th January 1929.
6	$50 \cdot 25$	",	+ 0.23	566	$26 \cdot 8$	January 1929.
9	$49 \cdot 78$	"	+ 0.15	570	$26 \cdot 6$	
14	$49 \cdot 15$	".	+ $0 \cdot 13$	573	26.4	
19	$48 \cdot 79$	"	+ 0.07	577	2.5. 9	
23	$48 \cdot 75$	"	+ 0.01	582	26.5	
rch 1	4.9.10		- 0.06	586	$27 \cdot 0$	
2	49.10	R. B. M.	$0 \cdot 00$	588	27.0	
4	49.22		- 0.07	589	26.2	
7	$49 \cdot 46$	J.В ${ }^{\text {® }}$	- 0.08	592	$26 \cdot 6$	
13	$49 \cdot 12$	"	$+0.013$	595	26.9	Clock levelled.
19	$47 \cdot 27$		+ 0.31	596	25.9	
22	$46 \cdot 41$	",	+ $0 \cdot 28$	${ }^{6} 00$	$27 \cdot 1$	
27	$44 \cdot 94$	"	+ 0.29	600	26.4	

[^5](Continued)

TABLE 2.-TTemperature and pressure of Riefler clock No. 450, and its error and rate, by bent transit instrument, at 20 hours Indian standard time, 1928-29-(contd.).

* + ve rate $=$ gaining, ${ }^{\text {re rate }}=$ losing.

TABLE 3.-Latitude observations, Dehra Dūn.

Date of observation	No. of pairs obserred	Mean date	Probable error	Observed latitude	Observed latitude minus accepted latitude
			"	- ,	"
Dec. 1904 \& Mar. 1905	16	$1905 \cdot 05$	$\pm 0 \cdot 08$	$301851 \cdot 80$	0.00
Oct.-Nov. 1926	...*	1926.83	$\pm 0 \cdot 03$	301852.03	+ 0.23
$\begin{array}{lll}5 & 10 & 28\end{array}$	31	?			
9 ",	1				
14 " ${ }^{14}$	$2 \frac{1}{2}$				
26 "	10	> 1928.82	$\pm 0 \cdot 20$	$3018 \quad 52 \cdot 24$	$+0 \cdot 44$
$\begin{array}{lll}5 & 11 & 28\end{array}$	7	,			
16 ", "	7				
19 " "	7				
$\begin{array}{ccc}9 & 1 & 29\end{array}$	11) 1929.03	± 0.19	$301852 \cdot$ ¢1	+ 0.71
11 "	12) 1923.03	$\pm 0 \cdot 19$	$301852 \cdot 01$	+ 0.71
$\begin{array}{lll}16 & 2 & 29\end{array}$	11) 1929.13		$301851 \cdot 92$	+ 0.12
17 ,"	13		± 0.18	301851.92	+ 0.12
$\begin{array}{lll}15 & 4 & 29 \\ 16 & \end{array}$	6	? $1929 \cdot 29$	$\pm 0 \cdot 16$	$301851 \cdot 78$	- 0.02
16 " "	7		± 0		
$\begin{array}{lll}19 & 5 & 29 \\ 20 & \end{array}$	$8 \frac{1}{2}$	\} 1929.38	$\pm 0 \cdot 12$	$301851 \cdot 65$	-0.15

* Astrolabe. about 20 stars in each of 92 series of observation.

Note:-The latitude given is that of the Haig Observatory.

TABLE 4.-Value of g at Dehra Dūn, as derived from observations with the brass pendulums.

Montl	Pendulum				Mean of Nos. 138, 139 and 140
	137	138	139	140	
1928	Dynes	Dynes	Dynes	Dynes	Dynes
August 29th	979-084	979.076	979.085	979.072	$979 \cdot 078$
Novembersth...	-083	-074	. 075	- 073	-074
November 25th 1929	-337*	. 074	. 083	. 076	-078
January 7 thı ...	-081	-082	- 079	-073	-078
April 25 th	-094	$\cdot 076$	-079	-073	-076
May 30th	(178	-077	-081	-072	-077
August 29th ...	-069	-066	-073	-073	. 071

[^6]TABLE 5．—Mean values of the constants of Magnet No． 17 in 1928.

Month		Declination coustants	H．F．Constants				
		Mean magnetic collimation	Distribatiou factors			Mean values of＂m＂	
			P_{12}	$\mathrm{P}_{2 \cdot 3}$	$\left\lvert\, \begin{gathered} \text { Accepted value of } \\ \log \left(1+\frac{\mathrm{P}}{\mathrm{r}^{2}}+\frac{Q}{\mathrm{r}^{4}}\right)^{-1} \end{gathered}\right.$	Monthly mealls	Accepted
			cm^{2}	cm^{2}		C．G．S．	
Jannary	\cdots	－6 21	5．85	$6 \cdot 85$		$806 \cdot 39$	
February	．．．	－ 621	5．76	$6 \cdot 98$		$\cdot 32$	
March	．．．	－ 616	5－96	6.84	＋	－35	
April	\ldots	－ 616	5•79	$6 \cdot 96$	品	－ 25	㫛
May	\ldots	－ 617	5.78	$6 \cdot 99$	${ }_{0}$	$\cdot 14$	昌
Jane	．．．	－ 615	5．84	$6 \cdot 97$	$\stackrel{\text { ¢ }}{+}$		＋
Jaly	\ldots	－ 622	$5 \cdot 81$	$7 \cdot 00$	\％	． 08	$\stackrel{\infty}{\sim}$
Aggnst	\cdots	－ 622	$5 \cdot 70$	$7 \cdot 02$	$\stackrel{\infty}{\infty}$	$\cdot 15$	$\stackrel{\rightharpoonup}{0}$
September	．．．	－ 621	$5 \cdot 74$	$7 \cdot 03$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	13	－8
October	．．．	－ 621	$5 \cdot 86$	$7 \cdot 19$		－16	
November	．．．	－ 620	$5 \cdot 85$	7．04		． 23	
December	．．．	－622	5•81	$7 \cdot 09$		－28	

TABLE 6．－Monthly mean values of the Magnetic elements， and their annual changes．Dehra Dūn，1927－28．

Month	Horizontal force$\text { -32.000 C.G.S. }+$			Declination li． $1^{\circ}+$			Dip N． $45^{\circ}+$			Vertical force 33，000 C．G．S．＋		
	1927	1908	Annual change	19271	$\|1928\|$	Annunl chnuge	1927	$1928 \mid$	Annual change	1927	1928	Annual change
	γ^{*}	$\boldsymbol{\gamma}^{*}$	γ^{*}	＇						$\boldsymbol{\gamma}^{*}$	γ^{*}	$\boldsymbol{\gamma}^{*}$
January	919	958	$+39$	24.11	19．9	$-4 \cdot 2$	$27 \cdot 6$	$29 \cdot 1$	$+1 \cdot 5$	452	521	＋69
Febrnary	931	938	＋ 7	23．71	$19 \cdot 5$	$-4 \cdot 2$	$28 \cdot 2$	30.8	$+2 \cdot 6$	476	533	＋ 57
March	928	943	$+15$	$33 \cdot 61$	$19 \cdot 3$	$-4 \cdot 3$	$28 \cdot 5$	$31 \cdot 0$	$+2 \cdot 5$	479	543	$+64$
April	929	912	＋ 13	－2 2 ； 1	$19 \cdot 11$	$-3 \cdot 6$	$27 \cdot 6$	31－1 ${ }^{1}$	＋3．5	463	542	+79
lay	914	956	＋ 92	$\because 2 \cdot 1$	$18 \cdot 6$	－ 3.9	$28 \cdot 1$	$30 \cdot 6$	$+2 \cdot 6$	474	547	＋ 73
June	949	$9+0$	－！	$22 \cdot 01$	$18 \cdot 6$	$-3 \cdot 4$	$28 \cdot 0$	$31 \cdot 9$	$+3 \cdot 9$	491	557	＋ 66
Jory	$9+1 ;$	4171	-15	$21 \cdot 18$	$18 \cdot 6$	$-3 \cdot 0$	$29 \cdot 3$	$32 \cdot 5$	$+3 \cdot 2$	514	559	＋． 45
Angnst．	011	93：3	$+2$	21． 1	$18 \cdot 1$	－3．1	$30 \cdot 3$	：12－4．	$+2 \cdot 1$	518	Бร．9	$+41$
September	932	931	-1	21.11	18．1	$-3 \cdot 0$	$30 \cdot 5$	$33 \cdot 2$	$+2 \cdot 7$	520	574	＋ 64
Oetober	914	？ 0	$+26$	$\because 1.41$	$17 \cdot 7$	$-3 \cdot 7$	$30 \cdot 5$	$33 \cdot 0$	$+2 \cdot 5$	502	577	＋ 75
Nrocmilice	9731	129	－ 1	$20 \cdot 11$	$17 \cdot 4$	$-3 \cdot 4$	30－3	122．9	$+2 \cdot 6$	515	664	+79 +49
December	！25	185	$+10$	20．617	$17 \cdot 3$	$-3 \cdot 3$	：31．1	$33 \cdot 2$	$+2 \cdot 1$	526	577	＋ 61
Mends	031	940	＋ 9	$22 \cdot 11$	18：3	$-3 \cdot 6$	$29 \cdot 2$	$31 \cdot 8$	$+2 \cdot 7$	494	554	$+60$

TABLE 7.-Declination at Dehra $D_{\bar{\iota} n}$ in 1928 , (determined from 5 selected quiet days in each month).

$$
\begin{aligned}
& \text { PTE-The mean declinatiou for any hour mav be obtained by applying the hourly deviation for } \\
& \text { Figares in thick type iodicate the maximum and minimam values of the hourly deviation. }
\end{aligned}
$$

Note-The mean declination for any hour mav be obtained by applying the hourly deviation for that bonr with the sign giren, to the mean monthly value
Figares in thick type indicate the maximum and minimum values of the hourls deviation.

+ Obtained from the mean of all honrs of the 5 selected quiet days in each month.

[^7]

TABLE 12.-Earthquakes recorded at Dehra Dūn during 1928-99.

\dagger Recognized with difficulty.
(Continued).

TABLE 12.-Earthquakes recorded at Dehra Dūn
during 1928-29-(contd.).

10	Date	Indiau standard time					Intensityofrecord	$\begin{aligned} & 8 \\ & 0.8 \\ & \text { 菏 } \\ & \hline \end{aligned}$	Femarks
		1st P. 'r.	2nd P.T.	Long wave	$\begin{gathered} \text { Maxi- } \\ \text { mum } \end{gathered}$	Finish			
	1929	$\hbar \mathrm{m} \quad \mathrm{s}$	$h \quad m \quad s$	$\boldsymbol{h} \boldsymbol{m} \boldsymbol{s}$	$h m$	$h m$		miles	
31	Mar. 10	$201500 t$			2024	2028	slight		
32	, 13	163330	$163400 t$	163510	1635	1642	slight	400	
33	[19		...	\cdots	525		slight	...	
34	, 20	$24500 t$			424	${ }_{4} 49$	slight		
35	, 21	$82900 t$	$84000 t$	$85300 \dagger$	925	1034	slight	6200	
36	, 22	$83810 \dagger$	84320	84650	847	916	slight	2100	
37	1, 24	$14000 \dagger$	$14700+$	$15400+$	155	213	slight	3300	
38	, 25	92050	92320	92500	926	950	sligh	900	
39	, 29	$20700 \dagger$	$21900+$	$22600 \dagger$	259	722	slight	6900	
40	Apr. 1	15440	$20500+$	$21900+$	222	321	slight	6000	
41		$155500 \dagger$	$155700 \dagger$	$160100 \dagger 16$	1605	1633	sliglit	1200	
42	, 11	$52000 \dagger$	5 $2300+$	524 00f	5	710	slight	900	
43	May 1	028 cot	03200	$03500+$	040	050	slight	1700	
44.		211200	211520	211720	2126	2154	severe	1300	Tran echapian
45	, 2	$\begin{array}{llll}20 & 12 & 50 \\ 21 & 57 & \end{array}$	$20 \quad 1700 \dagger$	$202500 \dagger$	$\because 0$ 87 1 1 50	2053	slight	2200	territory in Tur kistan, N. E cobst of Peraia.
46		$215700 \dagger$			2159	2210	slight		
47	, 5	$223300+$	$22 \begin{array}{lll}21 & 00 \dagger \\ 11 & 01 & 00\end{array}$	$224800 \dagger$	2252	2313	slight	4000	
48	6	105730	$110100+$	$1110600 \dagger 11$	1107	1142	slight	1600	
49		$\underline{22} 2400+$	$22 \quad 2900 \dagger$	$223200+$	2232	2312	slight	1900	
50	, 13	$185700+$	$19 \mathrm{ll} 300 \dagger$	$190700+$	1908	1933	slight	2300	
51	$\cdots 18$	$121800+$	122220	122620	1231	1330	moderate	1700	
52	, 20	$103500+$	$104400+$	$105800+$	1108	1233	slight	5300	
53.	$\cdots 21$	$221400 \dagger$	222020	222930	2235	2350	moderate	3400	
54	, 23	$15600+$	$020500 \dagger$	$21100 \dagger$	233	308	slight	4100	
55	1, 25	01450	01720	$01920+$	021	041	slight	1000	
56	, 26	$142300 \dagger$	14.3100t	$143900+$	$14 \quad 49$	1514	blight	4100	
57	1) 27	$42400+$	4 35	$45200+$			severe	6600	$\begin{aligned} & \text { Probably in } \\ & \text { Mendoza, Argen. } \end{aligned}$
58	June 3	$31700+$	$32300+$	$32900 t$	338	418	slight	2900	
59		120340	20610	20800	210	257	slight	1000	
60	, 4	124120	134230	24330	1245	1301	slight	500	
61		215420	210100	$210700+$	2108	2141	slight	3100	

\dagger Recognized with difficulty.
(Continued).

TABLE 12.-Earthquakes recorded at Dehra Dūn during 1928-29-(concld.).

\dagger Recognized with dificulty.

Chapter III

TIDES

by Lt.-Colonel C.M. Thompson, i.a.

1. Tidal observations.-During the year under report, registration by automatic tide-gauges was continued at the following stations :- Aden, Karāchi, Bombay (Apollo Bandar), Madras, Kidderpore, Rangoon, Bassein and Basrah. These observations were carried out under the supervision of this department, the immediate control of each observatory being entrusted to the local officers of the port concerned. In addition, the actual times and heights of high- and low-waters were observed on tide-poles (during daylight only) under the supervision of the local officials at Bhāvnagar, Chittagong and Akyab, and throughout the day and night at Pilakàt or Deserters' Creek. The results of these actual observations were compared against the predicted values, with a view to testing whether the predictions, which were based on tidal observations taken many years ago, still maintained a sufficient degree of accuracy.

Table 1 gives a complete list of stations where tidal registrations have been carried out since the commencement of tidal operations in India in 1874. The stations at which automatic tide-gauges are still working are shown in italics. Minor stations were closed after a few years, when sufficient data were available from the tidal registrations.

TABLE l.-List of Tidal Stations.

Station						Remarks
Sucz	..	futomatic	1897	1903	7	
Perim	...	,,	1898	1902	5	
Aden	...	"	1879	$\begin{aligned} & \text { still } \\ & \text { working } \end{aligned}$	50	
Maskat	...		1893	1898	5	
Bascah	\cdots	visual	1916	1922	7 7	
Ravah	..	automatic	1922	still working	$7{ }_{7} 14$	

(Continued).

TABLE 1.-List of Tidal Stations.-(contd.).

Station					Remarks
Bushire ...	antomatic	1892	1901	8	
		$\left\{\begin{array}{l}1868 \\ 1881\end{array}\right.$	1880	${ }^{* 13}$) 61	
Karāchi ...	*	$\{1881$	still working	48 ${ }^{61}$	gauge.
Navānar ...	\cdots	1874	1875	1	Tidetablea
Hanstal ...	,	1874	1875	1	not pablished.
Ozha Point ...		\{ 1874	1875	$1\} 2$	1904-05 exclu.
Orba Point -	\cdots				ded.
Porbundar ...	visual	1893	1894	2	
Porbandar ...	nutomatic	1898	1902	2	1898, 1899 \& 1902 excluded.
Port Albert Victor (Kāthiāwār) ...	risnal	1881	1882	1	
Port Albert Victor (Kăthiā wär) ...	antomatic	1900	1903	4	
Bhärnagar ...	,	1889	1894	5	
$\begin{gathered} \text { Bombay (Apollo } \\ \text { Bandar) } \end{gathered}$.	1878	still working	51	
Bombay (Prince's Dock)	"	1888	1925	37	
Mormugno (Gon) ...	,	1884	1889	5	
Kärwār	"	1878	1883	5	
Beypore ...	"	1878	1884		
Cochin ...	"	1886	1892	6	
Minicory $\quad .$.	,	1891	1896	5	
Tnticorin	"	1888	1893	5	
Pimbun Pasa,	1878	1882	4	
Colombo	,.	1884	1890	6	
Maile ...	"	1884	1890	6	
Triveomalce,	1890	1896	6	
Negapatam ...	,	1881	1888	5	$\begin{aligned} & 1883 \text { to } 1885 \\ & \text { excluded } \end{aligned}$
Miodris		¢ 1880	1890		
.	*	(1895)	still working	$34\}^{44}$	
Cocanāla	.	1886	1491	5	
Vizagapatam $\quad .$.	"	1879	1885	6	
Fnlse Point $\quad \ldots$.	1881	1885	4	
Dahlat (Sīgar Igland)	\cdots	1881	1886	${ }_{0}$	
Diamond Harbont ...;	-	1881	1886	5	
κ idderpore $\quad .$.	"	1881	still working	48	

(Continurd)

TABLE 1.—List of Tidal Stations—(concld.).

2. Inspections.-Burma.-The tidal observatories at Bassein and Rangoon were inspected by Mr. D.H. Luxa, the tidal assistant, in February and March 1929. The tidal observations which were resumed at Bassein at the request of the Port Advisory Board in November 1923, after a lapse of nearly 20 years, were brought to a close on the 28th February 1929, when the automatic tide-gauge and its component parts were dismantled.

Indif.- The inspection of the tidal observatories at Madras and Kidderpore (Calcutta) was also carried out by Mr. Luxa, the former in February and the latter in March 1929. The inspection of the tidal observatory at Madras was carried out at the request of the Chicf Engineer, Madras Port Trust. The old tidal observatory at Mudras, which was built early in 1914, having become very unstable, a new ons was built alongside it, and an inspection of both the old and new observatories was carried out. The registration of the tidal curves at the old observatory was stopped at $3-0 \mathrm{p} . \mathrm{m}$. on the 12th February 1929 , and was resumed in the new observatory at 4 1.m. on the 15th February 1929.

The inspection of the tidal observatory at Apollo Bandar, Bombay, was carried out by the Surveyor, Port Trust, Bombay, in March 1929. The Karachi tidal observatory was last inspected in Jamary 1928, by the Harbour Surveyor of the Port Trust, and no further reports regarding inspections have been received from him since then. In the case of Arlen also, no reports have been receiverl as to whether the tidal observatory has been inspected or not.
\dagger Oliservations were resumed at the Pilnkit or Deserters' Creek, ahout f mile west of the site used in 1884-88.

It was last inspected by an officer of the Survey of India in October 1924. Except for minor stoppages, all the tide-gauges have worked satisfactorily.
3. Harmonic analysis.-The reduction of the tidal observations at Bassein for the year 1927, have been fully reduced by the method of harmonic analysis. The resulting values of the harmonic constants are given in Table 2.

TABLE 2.-Values of the tidal constants for Bassein 1927.

Tide symbol	1927				Tide symbol	1927			
	$\mathrm{A}_{0}=8 \cdot 309$					$\mathrm{A}_{0}=8 \cdot 309$			
	R	ζ	H	κ		R	ζ	H	κ
Short period	feet		feet		Short period	feet		feet	
S_{1}	0.004	139.95	0.064	$139 \cdot 95$	\mathbf{N}_{2}	$0 \cdot 400$	$248{ }^{\circ} 54$	$0 \cdot 400$	$41 \cdot 36$
S_{2}	0.717	93.22	0.717	93.22	V_{2}	$0 \cdot 220$	$20 \cdot 38$	0.221	27.03
S_{4}	0.014	58.63	0.014	$58 \cdot 63$	μ_{2}	0.259	78.44	0.260	$183 \cdot 32$
S_{8}	0.003	68.96	$0 \cdot 003$	$68 \cdot 96$	T	$0 \cdot 160$	34.67	$0 \cdot 160$	$36 \cdot 48$
S_{8}	0.008	$30 \cdot 29$	$0 \cdot 003$	$39 \cdot 29$	(MS^{2})	6.171	321.16	0.171	$13 \cdot 60$
M,	0.019	134.01	$0 \cdot 000$	$76 \cdot 22$	$(2 \mathrm{SM})_{2}$	0.057	354.17	$0 \cdot 087$	$301 \cdot 73$
M_{2}	2.222	$350 \cdot 71$	$2 \cdot 225$	$52 \cdot 16$		0.172	$232 \cdot 68$	0.072	$125 \cdot 87$
$\mathrm{M}_{3}{ }^{\text {a }}$	0.013	$300 \cdot 65$	0.013	$19 \cdot 31$	$\left(\mathrm{M}_{2} \mathrm{~N}^{2}\right)_{4}$	0.049	185.58	0.049	$30 \cdot 83$
M_{4}	0.24	$232 \cdot 87$	$0 \cdot 245$	337.75	$\left(\mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	U.066	88.38	$0.06{ }^{\text {a }}$	321.98
	0.085	06.00	0.085	$253 \cdot 33$	$\left(2 \mathrm{M}_{2} \mathrm{~K}_{1}\right)_{3}$	0.075	347.89	U.074	271.62
$\mathrm{m}^{\text {a }}$	0.026	$340 \cdot 23$	$0 \cdot 026$	189.99					
O_{1}	$0 \cdot 172$	$162 \cdot 96$	$0 \cdot 167$	$38 \cdot 11$					
K_{1}	$0 \cdot 375$	226.04	$0 \cdot 368$	$47 \cdot 20$	Long period				
$\mathbf{K}_{\mathbf{2}}$	$0 \cdot 198$	$263 \cdot 42$	0.183	$85 \cdot 49$	M ml	$0 \cdot 080$	183.05	0.090	$82 \cdot 67$
\mathbf{P}_{1}	$0 \cdot 123$	250. 10	$0 \cdot 123$	$60 \cdot 22$	Mf	0.068	203-61	0.064	55.69
					MSf	$0 \cdot 297$	$95 \cdot 30$	$0 \cdot 297$	42.86
J_{1} Q_{1}	0.023 0.022	$\begin{array}{r}317.69 \\ 68.53 \\ \hline\end{array}$	0.022 0.021 0.2	34.58 $3+.09$	S	1.970	237.55		
L_{3}	$0 \cdot 165$	295-99	0.247	66-4.5	Sca	$0 \cdot 342$	162.6!	$0 \cdot 342$	2-27

4. Corrections to predictions.-Comparison of the predicted times and heights of high-and low-waters with those actually recorded, has indicated that the corrections shown below should be applied to the predictions for Rangoon and Chittagong. They have been included in the tide-tables for 1930. These corrections are instead of (not additional to) those already included in the tidetabies between 1927 and 1929 (See Geodetic Reports, Vols. II, III and IV).

TABLE 3.-Time corrections applied to Rangoon for 1930.

Month	Tide	Dates					
		1st-5th	6th-10th	11th 15 th	16th-20th	21st.25th	26th-31st
		minutes	minutes	minutes	minutes	minutes	minutes
January ...	High Low	-14 $-\quad 7$	-17 -10	-19 $-\quad 14$	-21 -16	- 23 $-\quad 18$	-24 -18
February ...	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	-25 -18	-25 -18	-26 -18	-26 -18	-26 -18	-26 -17
March ...	High Low	-25 -16	-23 -15	-21 -13	-20 -12	-18 -10	$-\quad 17$ $-\quad 9$
April ...	High Low	-15 $-\quad 8$	-13 $-\quad 7$	-12 $-\quad 5$	11 $-\quad 3$	-10 $-\quad 3$	-9 $-\quad 2$
May	$\underbrace{\text { Low }}_{\text {High }}$	$-\quad 7$ $-\quad 3$	$-\quad 6$ $-\quad 3$	$-\quad 6$ $-\quad 3$	$-\quad 7$ $-\quad 3$	$-\quad 7$ $-\quad 3$	$-\quad 7$ $-\quad 4$
Jane	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	-7 $-\quad 0$	-7 $-\quad 7$	$-\quad 9$ $-\quad 8$	-11 $-\quad 8$	-14 $-\quad 8$	-15 $-\quad 9$
July	High Low	-15 -10	-15 -12	-16 $-\quad 13$	-18 -13	$-\quad 20$ -14	$-\quad 22$ $-\quad 14$
August ...	High Low	-23 -13	-25 -13	$-\quad 26$ -11	$-\quad 24$ $-\quad 10$	$-\quad 22$ $-\quad 9$	-19 $-\quad 7$
September...	High Low	- 19 $-\quad 5$	-16 $-\quad 3$	-12 $-\quad 2$	$-\quad 9$ 0	$\begin{array}{r}\text { [} \\ \hline \\ +\quad 2 \\ \hline\end{array}$	- 3 $+\quad 3$
October ...	Higl Low	$-\quad 1$ $+\quad 4$	0 $+\quad 6$	a $+\quad 2$ $+\quad 7$	$+\quad 3$ $+\quad 8$	$+\quad 5$ $+\quad 9$	$+\quad 6$ $+\quad 10$
Novomber...	High Low	7 $+\quad 7$ $+\quad 10$	$+\quad 7$ $+\quad 10$	$+\quad 8$ $+\quad 10$	8 $+\quad 10$	$\begin{array}{r}7 \\ +\quad 9 \\ \hline\end{array}$	$\begin{array}{r}+\quad 6 \\ +\quad 8 \\ \hline\end{array}$
December ...	High Low	+ + $+\quad 6$	$\begin{array}{r}+\quad 1 \\ +\quad 4 \\ \hline\end{array}$	- 2 $+\quad 2$	$\begin{array}{r}5 \\ -\quad 0 \\ \hline\end{array}$	$\begin{array}{r}-8 \\ -\quad 2 \\ \hline\end{array}$	11 $-\quad 5$

The above corrections are based on the mean fortnightly results of the comparisons between predicted and actual differences from 1923 to 1928 , computed for 5 -day periods.

TABLE 4.-Corrections to Chittagong predictions for 1930.

Tide	Correction to Time	Correction to Height
High-water	minutes +14	feet Low-water
+14	+0.2	

The above corrections are based on the mean results of the fortnightly differences between predicted and actual values between 1923 and 1928.

Basrah.-The revised method of corrections applied to the predictions of Basrah for 1929, was again adopted in the predictions for 1930. Comparisons made between predicted and actual times and heights of high- and low-waters at Basrah from January to July 1.929 show that the predictions have undergone little or no improvement. With the view to trying to improve matters, other methods of prediction for Basrah are being tested, and the question is still under investigation.
5. Tide-tables.-The tide-tables for Basrah and the Indian ports for 1930 were prepared and published, and their distribution completed by the end of October 1929. Advance copies of the 1930 tide-tables for the following ports:-Suez, Aden, Bushire, Karàchi, Bhāvnagar, Bombay, Mormugao, Colombo, Trincomalee, Madras, Dublat (Sāgar Island), Chittagong, Elephant Point and Mergui, were prepared and despatched to the Hydrographer to the Admiralty by the end of February 1929, for incorporation in the Admiralty tidetables for 1930. The amount realized by the sale of tide-tables during the year ending 30th September 1929, amounted to Rs. 6,160/8/-, exclusive of agents' commission charges and the cost of copies issued gratis.
6. Proposed tide-tables for the Indian Ocean.-As a result of the discussion between the Surveyor General of India and the Hydrographer to the Admiralty in 1928, proposals have been submitted to the Government of India, to discontinue, in so far as possible, the present pamphlet form in which the tide-tables for India have been published, and to publish them in one combined volume instead, styled " Tide-tables of the Indian Ocean". The new volume will not only contain full tide-tables for the 40.Indian ports, hitherto predicted by the Survey of India, but also, with the consent of the Admiralty and other authorities concerned, full tide-tables for 28 other standard ports. In addition, harmonic and non-harmonic constants and tidal differences for a number of the more important ports situated on the south and east coasts of Africa, the Indian Ocean, the China Sea and Eastern Archipelago, as well as for a few Mediterranean and Home ports will be given. The new volume will be
similar in style to the Admiralty Tide-tables, Part I (annual) and Part II (quinquennial), but will be published as a single annual volume. In this form it is hoped these tables will be more convenient for shipping companies which carry the Eastern trade. The price proposed for the new publication is Rs. 3/- only, while that of the present major series volume is Rs. 8/- and the prices of the pamphlets range from $-/ 12 /-$ annas to Rs. $1 / 8 /-$. The publication of these small pamphlets is uneconomic, except in the case of the large ports such as Bombay, Calcutta and Rangoon, of which over 800 pamphlets of each can be sold. It is hoped that the sale will increase in view of the additional information supplied in the tables, and the decreased cost.
7. Accuracy of predictions.-From comparisons made between predicted and actual times and heights of high- and lowwaters, at the eight stations where automatic tide-gauges were in operation and the 4 stations at which tide-poles were in use, the predictions for 1928 were found to have shown a marked improvement as regards height, especially of high-water, and to a lesser extent as regards time of low-water. A deterioration in time of both highand low-waters was noticed at Bhāvnagar, Chittagong and Pilakāt or Deserters' Creek, though a marked improvement as regards heights of both high- and low-waterslwas seen at these three stations and also at Basrah and Akyab. The greatest improvement was noticed at Kidderpore, and to a lesser extent at Aden, Karāchi and Madras. The greatest differences between the predicted and actual heights of low-water at the riverain ports were as follows:-

Port	Predicted minus actual in feet	Date	
Kidderpore ...	+ 2.9	24th September	1928
Raugoon	$-2 \cdot 5$	30th October	1928
F'ilakāt or Descrters Creek	- 1.8	29th October	1928
Bassein	- 3.2	30th \& 31st October and 1st November 1928	
Basral	$+4.6$	3rd March	1928

Tables 5) to 16 give the fortnightly mean errors in the predictions for all stations at which comparicons were made.

TABLE 5.-Mean errors E_{1} ann E_{2} for 1928.
ADEN

* E_{1} is with regard to sign: E_{2} is without regard to sign.

TABLE 6.-Mean errors E and F_{2} for 1928.
BASRAH

* E_{1} is with regard to sign : E_{2} is without regard to siga.

GEODETIC REPORT
TABLE 7.-Mean errors E_{1} and E_{0} for 1928.
karā chi

- \mathbf{K}_{1} is with regard to sign : \mathbf{E}_{g} is without regaru to aign.

TABLE 8.-Mean errors E_{1} and E_{2} for 19\&8.
bHĀVNAGAR

- E_{1} is with recent to sionn: F_{2} is whout teard to sign.

* F_{1} is with regnal to sign: E_{2} is without regard to sign.

TABLE 10.-Mean errors E_{1} and E_{2} for 1928.
madras

* F_{1} is with regard to sign: E_{2} is without regard to sign,

TABLE 1l.—Mean errors E_{1} and E_{2} for 1928.
KIDDERPORE

[^8]TABLE 12.-Mean errors E_{1} and E_{2} for 1928.
chittagong

fRRIOD 1028	MEAN ERRORS (Predicted-actual)											Number of errors exceeding			
														$\begin{gathered} 1 \cdot 0 \\ \text { feet of } \\ \text { height } \end{gathered}$	
	$\mathrm{E}_{1}{ }^{*}$							$\mathrm{E}_{\mathbf{2}}{ }^{*}$							
	Time	H. W.	Height	Time	L. W.	H	eight	$\underset{\text { Time }}{\mathbf{H}, \mathrm{V}}$	$W_{\text {Ht. }}$	$\begin{gathered} \text { L. } \\ \text { Time } \end{gathered}$	Ht.	\%		\%	-
	minutes		feet	minutes		feet		minutex		minutes					
	+	-	+ -	+	-	+	-								
Jan. 1-15		12.9	$0 \cdot 2$		12.7			$15 \cdot 6$	0.2	$14 \cdot 1$	$0 \cdot 3$	0	0	0	0
16.31		$9 \cdot 5$	$0 \cdot 1$	2.6		0.2		11.4	$0 \cdot 4$	$7 \cdot 8$	$0 \cdot 3$	2	0	0	0
Feb. 1.15		$7 \cdot 4$	0.5		1.2		$0 \cdot 4$	$13 \cdot 0$	$0 \cdot 5$	14.7	0.8	0	1	0	4
16.29		$4 \cdot 4$	$0 \cdot 1$		$0 \cdot 1$		0.3	$12 \cdot 4$	$0 \cdot 4$	$9 \cdot 0$	$0 \cdot 3$	0	0	0	0
Mar. 1-15	0.7		0.4	$4 \cdot 4$			$0 \cdot 2$	$9 \cdot 6$	$0 \cdot 6$	13.5	$0 \cdot 6$	0	0	3	2
16-31		11.5	0.6		$7 \cdot 2$	0.2		$15 \cdot 9$	$0 \cdot 8$	11.6	0•3	1	0	6	0
April 1.15	$2 \cdot 1$		$0 \cdot 3$	$2 \cdot 3$		0.5		$6 \cdot 5$	$0 \cdot 5$	$12 \cdot 5$	$0 \cdot 5$	0	1	0	2
16-30		$9 \cdot 5$	0.2		$7 \cdot 9$	U.2		$12 \cdot 0$	$0 \cdot 6$	$10 \cdot 6$	0.4	1	0	4	0
May 1-15		$9 \cdot 9$	$0 \cdot 3$		1.4.	$0 \cdot 3$		$9 \cdot 9$	0. 4	$8 \cdot 1$	0•1	0	0	0	0
16-31		11.4.	$0 \cdot 6$		8.4			11.5	$0 \cdot 6$	$9 \cdot 1$	$0 \cdot 6$	0	0	4	1
June 1-15		$12 \cdot 7$	$0 \cdot 3$		$8 \cdot 8$		$0 \cdot 1$	12.7	$0 \cdot 6$	11.3	$0 \cdot 5$	2	0	2	1
16-30		$8 \cdot 0$	$0 \cdot 0$		8•7		0.2	$9 \cdot 1$	0.2	$10 \cdot 7$	$0 \cdot 5$	0	0	0	1
July 1-15		$12 \cdot 1$	$0 \cdot 1$		$1 \cdot 3$	$0 \cdot 2$		12.8	$0 \cdot 3$	7.0	$0 \cdot 2$	0	0	0	0
16-31		$2 \cdot 7$	$0 \cdot 3$	4.4			$0 \cdot 4$	$5 \cdot 1$	$0 \cdot 4$	$6 \cdot 7$	$0 \cdot 5$	0	0	0	0
dug. 1-15		$2 \cdot 1$	$0 \cdot 1$		$0 \cdot 4$	$0 \cdot 4$		5.2	$0 \cdot 4$	$7 \cdot 9$	04	0	0	0	1
16-31	$1 \cdot 2$		$0 \cdot 2$	$5 \cdot 4$			$0 \cdot 3$	$3 \cdot 9$	0.5	$8 \cdot 2$	$0 \cdot 4$	0	0	0	2
Sept. 1-15		$4 \cdot 7$	0.3		$1 \cdot 6$	0.5		$6 \cdot 1$	$0 \cdot 3$	$8 \cdot 6$	$0 \cdot 5$	0	0	1	0
16.30		$7 \cdot 8$	0.0		$2 \cdot 3$		$0 \cdot 3$	8.2	(1.2	6.8	$0 \cdot 4$	0	0	0	2
Oct. 1-15		13.4	(1.2		$8 \cdot 5$		0.8	14.1	05	8.8	0.8	1	0	1	5
16-31		13.8	$0 \cdot 3$		$8 \cdot 0$		0.4	13.8	$0 \cdot 4$	$9 \cdot 3$	$0 \cdot 5$	1	0	0	2
Nov. 1-15		18.3	$0 \cdot 1$		9.9	$0 \cdot 0$		18.3	$0 \cdot 3$	$10 \cdot 5$	$0 \cdot 2$	1	0	1	0
16-30		12.9	$0 \cdot 2$		$10 \cdot 8$	$0 \cdot 2$		13.5	$0 \cdot 5$	$10 \cdot 3$	04	0	0	0	0
Dec. 1-15		$2 \cdot 3$			0.5			53	$0 \cdot 2$	$5 \cdot 6$	$0 \cdot 4$.	0	0	\checkmark	0
16-31	11.6		$0 \cdot 4$	$8 \cdot 7$			$0 \cdot 2$	14.7	$0 \cdot 4$	$10 \cdot 2$	$0 \cdot 3$	0	0	$1)$	1
Totals	15.6	$187 \cdot 3$	$3 \cdot 2$	27.8	99.7	$3 \cdot 5$	3.6	$2 \mathrm{CO} \cdot 6$	$10 \cdot 2$	$239 \cdot 8$	$10 \cdot 5$	9	2	22	23
$\mathrm{M}_{\text {fans }}$			$+0.1$				$0 \cdot 0$	$10 \cdot 9$	$0 \cdot 4$	$9 \cdot 7$	11.4				...

* E_{1} is with regard to sign : E_{2} is without regard to sigu.

TABLE 13.-Mean errors E_{1} and E_{2} for 1928.
AKYAB

* E_{1} is with regard to sigu: E_{2} is without regard to sign.

TABLE 14.-Mean errors E_{1} and E_{2} for 1928.
BASSEIN

* E_{1} is with regard to sign: E_{2} is without regard to sign

GEODETIC REPORT
[Vol. v.
TABLE 15.-Mean trrors E_{1} and \boldsymbol{E}_{2} for 1928.
pilakāt or deserters' creek

* E_{1} is with regard to sign: E_{2} is withont regard to sign.
\dagger 'Tide-pole observations from l6th August 1928.

Chap. ini.]
TIDES
TABLE 16.-Mean errors L_{1} and E_{2} for 1928.
RANGOON

* E_{1} is with regard to sign: E_{2} is withont regard to sign.

Chapter IV

GRAVITY AND DEVIATION OF THE VERTICAL

Section I

by Major E. A. Glennie, d.s.o., r.e.

(i) Fidld Season 1928-29.

1. Programme.-The field season was planned to increase the number of gravity stations near the coast and in the south of India. Observations were made at twenty stations situated as follows :-

New stations on or near the East coast ... 10
" ," near the Eastern Ghāts ... 1
", ", in Hyderäbād State ... 1
", ", in South India, inland ... 4
Old stations 4
At all stations, except Bahanagar Bāzār, where the pendulum tent was used, observations were made in rooms. The field season was ended early so as to swing pendulums at Dehra Dūn simultaneously with those of the Duke of Spoleto's Italian expedition to the Kara-koram.
2. Strength of the party.-The gravity party consisted of one officer, one clerk, one computer and eighteen khalāsis. Observations were made by Major E. A. Glennie. Movements were by rail. Health on the whole was good, although there was some malaria.
3. Method of observation. -The method of observation, and apparatus used was the same as in the previous field season, described in Geodetic Report Vol. IV. A Geryk type oil-filled vacuum pump was received early in the season and proved a great success and very light to work. After trying a great number of heavy greases, the most suitable grease for sealing the vacuum box was found to be Vacuum Oil Coy. product No. 2295, a very stiff tacky grease which keeps indefinitely without going rancid as do many of the heavy greases on the market.
4. Adjustment of Riefler Clock.-On return from the field the pendulum apparatus was put to a novel use. A reference to Geodetic Report Vol. III (Chapter 1, paras $6 \& 7$) shows that hitherto the Riefler clock has not been used for the reception of

wireless time-signals owing to the irregularity of its beats. The Riefler clock was made to actuate the pendulum flash-box and the flashes due to its beats observed. They came alternately in two series, each of which progressed fairly regularly across the field of view of the telescope. By a very slight adjustment of the levelling screws of the clock, without stopping it or interfering with the vacuum, the two series were reduced to one fairly even series. Complete regularity was not achieved; even with the best possible setting the beats of the Riefler clock are scarcely regular enough for satisfactory pendulum work; but this is a very delicate test. The small remaining irregularity of the beats is not noticeable when receiving the wireless signals. Since March 1929, therefore, the Riefler clock has been used to receive wireless time-signals and clock A is no longer used as an intermediary.

(ii) Results of the Field Work.

5. Details.-The results are shown in detail in Tables 1 to 4. Average heights for the Hayford corrections for zones beyond a radius of 20 miles were obtained from the "Average Height map of India" (vide maps in pocket at end of this volume).
6. Results at old pendulum stations.-These stations were revisited at the suggestion made by Dr. Oldham in 1926. He had doubts as to the stability of gravity at Dehra Dūn owing to its nearness to the Himālaya. The old and new values are shown below:-

Station		Old value of g	Dite	New value of g	Date
		cm'sec'		$\mathrm{cm}^{\text {c/sec }}$ 2	
Bilispur	\ldots	$978 \cdot 682$	10-1-10	$974 \cdot 681$	3-11-28
Cuttack	...	978.660	14-12-0.4.	978-6\%9	19-11-28
Madras	...	$978 \cdot 283$	5-3-04	$975 \cdot 279$	11-1-2!
Bansralore	...	978-020	2-2.18	$978 \cdot 025$	18 1-2:!

The observations at Madras in 1904 were not very consistent, (vile Prof. Paper No. 10, pl. 52 and 175). The agreement between new and old values is so good that it seems certain that gravity values in India are stable inter se. Whether they are stable in relation to gravity values in Europe is open to question. Each time a connection between Dehra Dūn and Europe has heen made, a different value for g at Dehra Dün has been obtained. These values are tabulated below:-

Date of observation at Dehra Dūn	European station of reference	g at Dehra Dūn
		$\mathrm{cm} / \mathrm{sec}^{3}$
February 1904 ...	Kew	979-063
August 1913	Genoa	079
March 1924	Kew	054*
October 1927 ...	Cambridge	072
Jnnuary 1939	Kew	068*
Febraary 1929 ...	Genor	069

[^9]Two other values may be deduced from observations at Jalpaigurī by Dr. Hecker in 1905, and at Colāba by Commander Alessio in 1906. In both cases the European station of reference is Potsdam. At Jalpaiguri the S. of I. observations referred to Dehra Dūn were done at the same time as those of Dr. Hecker, but at Colāba they were done in 1904 , so the Colāba deduction has less weight. The deduced value of g at Dehra Dūn from these two stations is: from Jalpaiguri $979 \cdot 065$ and from Colāba $979.059 \mathrm{~cm} / \mathrm{sec}^{2}$. The value which has been adopted for Dehra Dūn throughout is 979.063 $\mathrm{cm} / \mathrm{sec}^{2}$.
7. Basevi stations.-The observation at Cocanāda gives one more comparison with the old work of Basevi. Up to date, eight Basevi stations have been revised in addition to Dehra Dūn. Details of Basevi stations referred to the Potslam system are given in the Report of the International Geodetic Association for 1909, Vol. III, page 236.

Basevi's value for Dehra Dūn is $979 \cdot 069 \mathrm{~cm} / \mathrm{sec}^{2}$. The difference in g between Dehra Dün and the revisited stations is given below.

Difference in g from Dehra Dün.

Station		Bagevi	Morlorn	B-M
		$\mathrm{cm}_{\text {reec }}{ }^{\text {² }}$	$\mathrm{cm} / \mathrm{sec} \mathrm{c}^{2}$	$\mathrm{cm} / \mathrm{rec}^{2}$
Commita	\cdots	-0.746	- $0 \cdot 781$	-0.015
Madras	\ldots	- 1.1135	- 1.017	-0.018
Bangalore	\ldots	-0.586	-0.071	-0.015
Kalismpur	...	-0.310	- 0.28i)	-0.024
Nojli	\ldots	$+0 \cdot 083$	$+11.080$	+ 0003
Misgontio	\cdots	-- 0.282	- 0.870	-0.012
* Mian Mir	...	$+0.311$	$+0.320$	$-0 \cdot 009$
Kaliāna	\ldots	$+0.07 .1$	$+0.091$	-0.017

* At Miãn Mir Basevi used the light stand.

8. European stations of reference.-The fundamental gravity base station for all gravity work is at Potsdam in the pendulum hall of the Geodetic Institute. Here observations with a number of reversible pendulums were begun in 1898. The value of g obtained at Potsdam is $981 \cdot 274 \pm 0 \cdot 003 \mathrm{~cm} / \mathrm{sec}^{2}$.

The values of g at the other European stations named in para 6 above are all derived from Potsdam. Brief details are given below; fuller details can be obtained from the following publications :-
(i) Report of the International Geodetic Association 1900.
(ii) U. S. Coast and Geodetic Survey Report 1901, Appendix 5.
(iii) Report of the International Geodetic Association 1909,

Vol. III. (This report contains comprehensive lists of all gravity work).
Kew. $\quad g=981 \cdot 200 \mathrm{~cm} / \mathrm{sec}^{2}$
Reference station Potsdam
Observer Putnam
Date 1900
Genoc. $\quad g=980 \cdot 518 \mathrm{~cm} / \mathrm{sec}^{2}$
There are three links in the chain connecting Genoa to Potsdam, viz:-
Potsdam-Padua
Padua-Turin
Turin-Genoa
Cambridye. $\quad g=981 \cdot 265 \mathrm{~cm} / \mathrm{sec}^{2}$

Reference station	Potsdam
Observer	Vening Meinesz
Date	1926

At the same time Lenox Conyngham obtained the same result for g at Combridge using Kew as the reference station. The values of g at Kew and Cambridge, therefore, seem to be very well established.
9. Results at new stations.-At Bahanagar Bāzãr the negative anomaly was unexpected as this is on an elevated part of the geoid. The alluvium is evidently very light in this area, whilst the geoid is raised by deep-seated material of high density.

At Waltair a rocky spur runs out to the coast. If this is not compensated the positive anomaly is explained.

The negative anomalies at Gūdunr, Vellore, and Cuddalore show that at Madras is not a purely local anomaly.

Other anomalies are in reasonable accord with the geoid.
(iii) Field observations made during recess.
10. Shahpur (Sargodha) and Chakrata.-Observations were made at, Shāhpur by Mr. B. L. Gulatee, m.s. in August 1928 at the request of the Punjab Irrigation Department, to supplement their gravimetrical investigrations with the Eötros Balance in this
area. Gravity anomalies indicate a ridge of high density underlying Shāhpur and extending thence in a south easterly direction beyond Lahore.

Observations were made at Chakrātã in July 1929 by Major E. A. Glennie. The calculation of the orographical and Hayford corrections has been postponed until the new cantonment survey of Chakrātā has been completed.

The work at Chakrātā is interesting because it initiates a new method of observation with the Cambridge apparatus which will be adopted in future. The innovation consists in omitting the middle pendulum. The two outer pendulums are swung simultaneously with opposite phases as usual, and the flash from the flash-box travels as in the diagram below.

Thus one flash only, representing a combination of the two pendulums, is received in the telescope. This has the advantage that the two moving mirrors double the optical angle, so that satisfactory observations can be made with the pendulums swinging at a very small amplitude. The practical result of this is that the pendulums, which are very closely isochronous, can be swung continuously between wireless time-signals, thereby greatly reducing the labour of observation, and increasing the accuracy by almost complete elimination of clock errors. Observations were made with two clocks, viz:-the pendulum clock No. 238 by Strasser and Rohde, and a chronometer No. 12831 by Thomas Mercer. The Bordeaux transmission was used to rate one clock and the Rugby signals for the other.

The results at Shāhpur and Chakrātā are tabulated below :-

(iv) Research Work.
11. The figure of the earth.-Although there are still some large areas in India untouched, the 184 gravity stations are sufficiently widely distributed to justify detailed investigation with regard to the figure of the Earth.

The value of gravity on a spheroid at? any latitude is :-

$$
\gamma_{0}=G^{\prime}\left(1+A \sin ^{2} \phi-B \sin ^{2} 2 \phi\right)
$$

where G^{\prime} is the equatorial value of gravity,
A is a factor depending on the ellipticity,
B is $0 \cdot 000006$ in the case of spheroids applicable to the Earth (See "Geodesy ", Dept. Paper No. 12, by de Graaff Hunter pp. 158161).

The gravity data in India have been used to obtain the two unknowns G^{\prime} and A with the result:-

$$
\begin{aligned}
G^{\prime} & =978 \cdot 021 \mathrm{~cm} / \mathrm{sec}^{2} . \\
A & =0 \cdot 005359
\end{aligned}
$$

which yields the value of the reciprocal of the ellipticity $1 / \epsilon=301$.
Now the spheroid which is most suitable for India is that which will best fit its geoid. This is the S. of I. spheroid I or II, $1 / \epsilon=292 \cdot 4$.

The gravity formula for this is:-

$$
\gamma_{0}=G^{\prime}\left(1+0 \cdot 005234 \sin ^{2} \phi-0 \cdot 000006 \sin ^{2} 2 \phi\right) .
$$

Here G^{\prime} is the only unknown, so that a value for G^{\prime} can be obtained from every observation of gravity. Chart VI shows values of G^{\prime} averaged over two-degree zones of latitude for both S. of I. spheroid II* and the International spheroid ($1 / \epsilon=297 \cdot 0$), whose gravity equation is:-

$$
\gamma_{\circ}=G^{\prime}\left(1+\cdot 005287 \sin ^{2} \phi-0 \cdot 000006 \sin ^{2} 2 \phi\right)
$$

On the same figure are shown the heights of the "Compensated geoid" (vide para 12) for the same zones. The correlation between G^{\prime} and the height of the geoid is most marked. This relation is well expressed by a simple straight line formula $G^{\prime}{ }_{H}=G^{\prime}{ }_{o}+K H$ where K is a factor depending on the spheroid,
H is the height of the compensated geoid above the spheroid, $G^{\prime}{ }_{0}$ and $G^{\prime}{ }_{\boldsymbol{H}}$ are the values of G^{\prime} when H is zero and H respectively.
The gravity formula for a station on the geoid should therefore le:-

$$
\begin{aligned}
\gamma_{\mathrm{H}} & =G_{\mathrm{H}}^{\prime}\left(1+A \sin ^{2} \phi-B \sin ^{2} 2 \phi\right) \\
& =\gamma_{0}+K H
\end{aligned}
$$

and the Hayford anomaly reduced to the spheroid is :-

$$
\begin{aligned}
g-\gamma_{\mathrm{D}} & \doteqdot g-\gamma_{\mathrm{H}}+\text { Hayford correction } \\
& \fallingdotseq g-\gamma_{\mathrm{C}}-K / I
\end{aligned}
$$

The Bowie correction is included in the correction - KH. The height correction for the height of the gravity station above sea-level corrects gravity to the surface of the geoid. An additional correction

[^10]is required to reduce to the surface of the spheroid. This is the Bowie correction and is equal to $+\cdot 094 I / / 1000$ (See Geodesy p. 160). It will not exceed $0.003 \mathrm{~cm} / \mathrm{sec}^{2}$ in Peninsular India. It must be emphasized that the correction $-K H$ has been obtained empirically from the data in Peninsular India. Its use therefore is strictly limited to Peninsular India; elsewhere conditions may well be entirely different.

The foregoing considerations show that in Peninsular India a satisfactory spheroid is not likely to be obtained from gravity data unless some correction similar to $-K H$ has first been applied to it.

When H is expressed in feet the values of G_{0}^{\prime} and K are:-

Spheroid	$G^{\prime} 0$	K
	$\mathrm{~cm} / \mathrm{sec}^{2}$	
S. of I.	$\mathbf{9 7 8 \cdot 0 2 5}$	0.0021
lnternational	$\mathbf{9 7 8 . 0 1 7}$	0.0019

Chart VII shows $g-\gamma_{\mathrm{c}}$ using Helmert's formula of 1901, and Chart VIIl shows $g-\gamma_{\mathbf{D}}$ using this formula for gravity and the International spheroid for H.

At Jubbulpore $K H$ amounts to $+0.040 \mathrm{~cm} / \mathrm{sec}^{2}$. Such an anomaly as this would be caused by a long ripple, a few miles in height, in the interface between the crust and the denser sub-crust, at a depth of (say) 70 miles. The crest of this ripple would underlie the highest part of the geoid, and run NW. from Sambalpur through Jubbulpore to Jodhpur. Northwards the trough would underlie the Gangetic Plain and to the south it would be under the depressed region of the geoid (Kārwār, Bellary etc.)

In the succeeding paragraphs reasons will be given for the belief that the main features of the geoid and of the gravity anomalies are due to deep-seated causes such as that outlined above. The argument is based on a critical examination of the geoids which will now be described.
12. The geoids.-The surface of a plastic, homogeneous Earth would as a result of its rotation assume the form of a spheroid. Since the figure of the Earth does in fact approximate to a spheroid, and since a spheroid is convenient for mathematical computation, it is universally adopted as the most convenient figure for the representation of the actual features of the Earth.

Land masses, ocean depths and lack of homogeneity of the crust cause deviations of the vertical from the true normal to the spheroid. Given a knowledge of these deviations a surface is obtained which rises and falls with reference to the spheroid. It represents the true mean surface of the sea itself, and in the case of land areas it is the surface of the water in small hypothetical canals imagined
oarried across in land from the sea. This surface is known as the GEOID.

If our knowledge of topography and crustal densities were complete, we could accurately compute the form of the GEOID by considering the attraction of the various masses. Our knowledge is faulty, but as a good starting point the theory of isostasy first propounded by Pratt and elaborated by Hayford is adopted. Put briefly, this theory states that all excess or deficient masses are compensated below sea-level: the compensation being uniformly spread out vertically until it is complete at a definite depth, "the depth of compensation", which is assumed to be about 70 miles. The ideal geoid computed on this theory is called the ISOSTATIC GEOID*. (See Chart IX, compiled by Captain G. Bomford, r.E.).

If the GEOID, derived from actual deviations of the vertical is corrected according to Hayford isostasy, i.e. if at any point on the GEOID the corresponding height of the ISOSTATIC GEOID is deduced from the height of the GEOID, a new figure is reached which is called the COMPENSATED GEOID \dagger.
13. Deductions from the geoids.-A comparison of the compensated and isostatic geoids should indicate how far Hayford isostasy is correct. If there is some constant error in the assumptions made, applicable to the whole of the portion of the geoid under consideration, e.g. if compensation is only 50% complete over the whole of Peninsular India, the compensated geoid should still show a general similarity to the isostatic geoid. There is however no similarity at all. The form of the compensated geoid might be due to geological features of average density differing from that assumed in the computations. Here again the surface geology seems to be in no way responsible for its form. The contours of the compensated geoid run across geological formations of widely different densities without any corresponding change in shape. One is therefore forced to the conclusion that the main features of the compensated geoid are due to a hidden deep-seated cause.
14. 'The Hayford gravity anomalies.-Precisely the same deductions can be made from the gravity anomalies. The anomaly contours are very similar to those of the compensated geoid; indeed this follows as a necessary result of the correlation found between "; "and H. Thus the major part of the gravity anomalies has the same deep-seated cause as the geoidal anomalies.

Local mations of density affect gravity more than they do the geoid. When therefore the correction K / H, that is to say the correction for thr anomalous deep-sented masses, has been applied to the Hayford gravity anomalies, the residuals or corrected anomalies $\left(g-\gamma_{1}\right)$:hould portray the local geology much better than the uncorrecterl anomalies $\left(g-\gamma_{\mathrm{c}}\right)$. If this is the case it will be a strong confirmation of the statement that the $K H$ anomalies are due

[^11]to a deep-seated cause. In this connection, however, the corrected anomalies have one defect. When a geological formation of excessive or deficient density is of sufficiently wide extent to appreciably affect the geoid, $K H$ will correct for it, so that in the middle of a wide area of high density $g-\gamma_{\mathrm{D}}$ will tend to be too low and vice versa.

The table below gives a comparison of the indications provided by $g-\gamma_{\mathrm{C}}$ and $g-\gamma_{\mathrm{D}}$ at certain places where information as to the density of the underlying strata is available. The anomalies are with reference to the S. of I. spheroid II and the International spheroid.

Place		Lati- tude	Longitnde	Density	S of I. Spherwid 11		International	
					$g-\gamma_{C}$	$g-\gamma_{1}$,	$g-\gamma_{c}$	$g-\gamma_{\mathrm{D}}$
					$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
J i lgaon	\ldots	$21^{\circ} 00^{\prime}$	$75^{\circ} 34^{\prime}$	[a]	+. 029	+.014	+.036	+-009
Ellichpar		$21^{\circ} 18^{\prime}$	$77^{\circ} 31^{\prime}$	${ }^{\text {[a] }}$	+.042	+.022	+.050	+-012
Hoshangābãd	...	$22^{\circ} 45^{\prime}$	$77^{\circ} 44^{\prime}$	2.6	+.036	-. 002	+.037	- . 011
Mortakka		$22^{\circ} 13^{\prime}$	$76^{\circ} 03^{\prime}$	2.67	+. 013	--. 019	+. 019	- 021
Umariá	...	$23^{\circ} 33^{\prime}$	80' 54'	$2 \cdot 6$	+. 022	-. 005	+.032	-. 008
Damoh		$23^{\circ} 50^{\prime}$	$79^{\circ} 26^{\prime}$	$2 \cdot 7$	+.025	-. 010	+.031	-. 015
Katni	...	$23^{\circ} 50{ }^{\prime}$	$80^{\circ} 26^{\prime}$	$2 \cdot 7$	+.022	-. 005	+.032	- 0008
Bilăspar	...	$22^{\circ} 144^{\prime}$	$82^{\circ} 12^{\prime}$	$2 \cdot 62$	+.022	-. 018	+.028	-. 008
Raipur		$21^{\circ} 14^{\prime}$	$81^{\circ} 41^{\prime}$	$2 \cdot 7$	$+\cdot 006$	-. 026	+.015	-. 021
Cuttack	...	$20^{\circ} 29^{\prime}$	$83^{\circ} 52^{\prime}$	1-91	+.012	-. 030	+.021	-. 030
Madras		$13^{\circ} 04^{\prime}$	$80^{\circ} 15^{\prime}$	1.90	$-.012$	-. 025	-. 038	-. 0205
Mysore		$12^{\circ} 19^{\prime}$	$76^{\circ} 4.0{ }^{\prime}$	2-85-2.90	-. 019	+.019	-. 008	+.030
Bangalore		$13^{\circ} 01^{\prime}$	$77^{\text {c }} 35^{\prime}$	2.85-2.90	-. 019	+. 023	-. 010	+. 030
Edgar Shaft	.	$12^{\circ} 56^{\prime}$	$78^{\circ} 16^{\prime}$	2-90.2.95	$+.013$	+.039	+.024	+.053

[a] Trap under a small depth of alluvium (i.e. Inirly high denity).
The information about densities was obtained from the Director of the Geological Survey of India in 1906 and 1910. He pointed out however that owing to the meagre information available, his estimates are rather in the nature of expert guesses, and must not be accepted as strictly accurate.

Bearing this in mind it is considered that in no case does $g-\gamma_{10}$ give indications which are definitely wrong, whereas $g-\gamma_{C}$ may be considered wrong at Hoshangābād, Umariā, Katnī, Bilāspur and Cuttack. The normal density assumed for Hayford computations is 2.67 .

In the above table all except the last four places are on an elevated part of the geoid. Next season's gravity work will be all on a depressed part of the geoid, after which it is hoped to make a more detailed examination of the relation between gravity anomalies, the geoids and geology,

(v) Deviation of the Vertical.

15. Sind and Baluchistan.-The computation of the astrolabe work of field season 1927-28, which could not be completed in the following recess, has now been completed.

The personal equation apparatus described in Geodetic Report Vol. III was used for the first nine stations; it gave a good deal of trouble, and finally at Dālbandin failed owing to a mechanical defect. The average of the results for personal equation was taken and used for all stations. The corrections for personal equation so obtained were:-

$$
\begin{array}{ll}
\text { E. A. Glennie } & -\cdot 01 \text { secs. } \\
\text { B.L. Gulatee } & --\cdot 11 \text { secs. }
\end{array}
$$

Results are shown in Table 5. The deflections in prime vertical have been omitted in the case of four stations at which there was a large difference in the results obtained on successive days. At the remaining stations also the P.V. deflections obtained differed more on successive days than the meridian deviations, and should be considered correct to the nearest second of are only.

Chart XIII shows in black the uncorrected deviations referred to the Everest spheroid. Deviations obtained in previous years are also shown. They are numbered with the serial number given in Professional Paper No. 16, pages 174, 176 and $\fallingdotseq 06$.

All resultant deflections are in the direction of visible masses, and agreement with previous work is everywhere good, but the deflections at Sāhiji are remarkably large. At this place the resultant deflection points to an exposure of scarlet red soil in the cliff about 300 yards away. This red soil was not seen anywhere else in the neighbourhood. If it betrays the presence of a mass of heavy mineral, such as hæmatite, the deflection would be explained. Unfortunately no sample of this soil was collected. On the same chart are shown in red the Hayford deflection anomalies referred to S. of I. spheroid II. These anomalies are not inconsistent with an extension under this area of the deep-seated feature which raises the geoid in the northern part of Peninsular India. The red broken line indicates the approximate line of its crest.

TABLE 1.—Times of vibration at Dehra $D_{\bar{u} n . ~ S e a s o n ~ 1928-29 . ~}^{\text {. }}$

Date	A	13	CA	CB	Mcan
1929	s	s	s	s	s
February	\ldots	$0 \cdot 5079520$...	0.5079521	
	\ldots	95.31	\ldots	9528	
	$0 \cdot 5079519$.$^{\text {. }}$	0-5079509	9525	
March 1	9525	\ldots	9522	\ldots	
"	9525		9515	...	
\cdots	9523	9530	
\geq	9526	9536	
"	9534	9530	\ldots	...	
Mean	$0 \cdot 5079524$	0.5079530	$0 \cdot 5079515$	0.5079526	0.5079524

Adopted Mean times of vibration.

		s	s	s	s
Genersl Mean	0.5079531	0.5079535	0.5079528	0.5079534	0.5079532

TABLE 2.-Difference between individual and mean pendulums. Season 1928-29. (The unit is $10^{-7} \mathrm{sec}$.)

Name of station		A	v	B	v	CA	v	CB	v
Dehra Dūn	...	+ 2	0	0	$+5$	0	- 2	- 1	- 3
Bilăspur	...	-2	-4	-2	+ 3	- 3	- 5	$+6$	+ 4
Bahanagar Bāzār	...	+ 6	$+4$	- 2	+3	- 3	-5	$+1$	-1
Cattack	...	$+4$	$+2$	- 2	+ 3	-4	-6	$+2$	0
Chatrapur	\ldots	+ 8	+ 6	- 1	+ 4	- 4	- 6	- 2	- 4
Dnsi	...	0	- 2	-7	-2	0	- 2	$+9$	$+7$
Pārvatīpuram	...	0	- 2	-6	- 1	+ 3	$+1$	$+5$	$+3$
Waltair	...	- 2	- 4	-7	- 2	+ 4	$+2$	$+6$	+ 4
Cocanāda	...	- 6	- 8	- 3	+ 2	- 1	- 3	$+9$	$+7$
Bezwāda	...	+ 1	- 1	+ 3	+ 8	- 5	- 7	+ 3	$+1$
Yellandlapād	...	+16	+14	- 8	- 3	+ 4	+ 2	-13	-15
Ongole	...	$+5$	+ 3	-12	-7	$+10$	$+8$	- 2	- 4
Gūdūr		-1	-3	- 4	$+7$	+ 3	$+1$	+ 2	0
Madras	\ldots	+ 2	0	- 3	+ 2	0	- 2	$+3$	$+1$
Bangalore	...	- 3	-5	-10	- 5	$+7$	+ 5	+88	+ 6
Vellore	\ldots	$+2$	0	- 3	+ 2	- 2	- 4	- 3	$+1$
Caddalore	...	+ 1	- 1		+ 1				
Negapatam	\ldots	- 3	- 5	- 6	- 1	+ 3	+ 1	$+6$	$+4$
Trichinopoly	...	$+7$	$+5$	- 10	- 5	+ 10	+ 8	- 5	- 7
Dindigul	.	- 1	-3	-6	-1	+ 7	+ 5	+2 $+\quad 5$	0
Madura Dehra Dūn	...	-3 0	-5 -2	-5 -6	0 $-\quad 1$	0 +9	-2 +7	+10 $-\quad 2$	+8 -4
Mean	\cdots	+ 2		-5		+ 2		+ 2	

TABLE 3.-Mean times of vibration and deduced values of g. Season 1928-29.

Nume of station	A	B	CA	CB	Mean
Bilàspar	0. 0080533	0.5080523	0.5080594	0.5980515	$0 \cdot 5080521$
	978.681	978.682	978-679	978-685	978.682
Bahanagar Buzar s	$0 \cdot 5080+86$	0.508049¢	0.5080495	0.5080491	0.5080492
	978.695	978.693	978-690	978.694	$978 \cdot 693$
Cuttack	0.5080575	0. 5080581	0.5080583	0.5080577	$0 \cdot 5080579$
	$978 \cdot 661$	978.660	$978 \cdot 656$	978.661	978.659
Chatrapar	$0 \cdot 5080648$	0.5080657	0.50806f0	$0 \cdot 5080658$	0.5080656
	978.632	978•630	$978 \cdot 627$	978 630	$978 \cdot 630$
Dusi	0.5080854	0. 0080861	$0 \cdot 5080854$	$0 \cdot 5080845$	0-5080854
	978.553	978.552	978.552	978.558	978.553
Pārvatipuram	0.5090926	0.5080932	$0 \cdot 5080923$	0.5080921	$0 \cdot 5030926$
	978.525	$978 \cdot 524$	$978 \cdot 525$	978.528	978-526
Waltair	0. 5080882	0. 5080887	0.5080876	0.5080874	0.5080880
	978.542	978.542	978.543	978-646	978.543
Cocanāda	0.5081018	$0 \cdot 5081015$	$0 \cdot 5081013$	$0 \cdot 6081003$	$0 \cdot 5081012$
	978-490	9;8-492	$978 \cdot 491$	$978 \cdot 497$	978-492
Bezwàda	0.5081119	0.5081117	0.5081125	0.5081117	0.5081120
	978.451	978.453	978.44;	978-453	978.451
Yel addlapad	$0 \cdot 5081145$	0.5081169	0.5081157	$0 \cdot 5081174$	0.5081161
	978.441	$978 \cdot 433$	978.435	$978 \cdot 431$	978.435
Ongole	0.5081254	0.5081271	0.5081249	$0 \cdot 5081261$	0-5081259
	978.399	$978 \cdot 394$	978-400	978-397	978-397
Gūdūr	0.5081485	0.5081488	0.5081481	0.5081482	0.5081484
	$978 \cdot 310$	978-310	978-310	978-312	978-311
Maclias	$0 \cdot 5081555$	$0 \cdot 5081$ ¢06	0.5081557	$0 \cdot 5081554$	$0 \cdot 5081557$
	978-283	978.282	978-281	978.284	978.282
Bangalore	0.5032225	0.5082232	0.5082215	$0 \cdot 5082214$	0.5082222
	978.024	$978 \cdot 023$	978-027	$978 \cdot 030$	978.026
Vellore	0.5081771	0.5081776	0.5081775	0-0.081770	0.5081773
	978.199	978.199	978-197	$978 \cdot 201$	978-199
Caddalore	$0 \cdot 50816+1$	0. 5081646	0.5081638	0.5081641	0.5081642
	$978 \cdot 250$	978-249	978-250	978-251	$978 \cdot 250$
Negapatam	0.5081799	0.5081802	$0 \cdot 5081793$	$0 \cdot 5081790$	0.5081796
	978-189	978-189	978.190	978.193	978-190
Trichincpoly	0. 5081862	0-5081879	0.5081859	0.5081874	0-5081869
	978-164	978.159	978-164	$978 \cdot 161$	$978 \cdot 162$
Dindigal	0. 5082101	0.5082106	$0 \cdot 5082093$	0.5082098	$0 \cdot 5082100$
	$978 \cdot 072$	978.072	978.074	$978 \cdot 075$	978.073
Madura	0•6082021	0.5082023	0.5082018	0.5082008	0.5032018
	$978 \cdot 103$	978.104	$978 \cdot 103$	978-109	478.105

Note:-CA means C pendalnm swang simaltaneonsly with A pendulam.
CB penrlalum" is always in the front position in the Apparatas.

TABLE 4.-Modern gravity observations in India.
(Additions in field season 1928-29.)

No	$\left\|\begin{array}{cc} \stackrel{\rightharpoonup}{0} & 0 \\ 0 \\ 0 & 0 \\ i n \end{array}\right\|$	Station	Date	Height	$\begin{gathered} \text { Latitude } \\ \mathrm{N} . \end{gathered}$	Longitude IL.	g	$g-\gamma_{\mathrm{A}}$	${ }^{g-\gamma_{C}}$
				feet			$\mathrm{cm} / \mathrm{sec}^{2}$	cm/sec ${ }^{2}$	cm/sec ${ }^{2}$
167	43D	Shīhpur (Sargodlu)	111828	595	321620	722836	979-445	-0.001	+0.037
64*	64.J	Bilãspur ...	31128	878	220353	8212	978.682	$+0.005$	+0.013
168	73K	Bahanagar Bāzür	131128	49	212008	864552	978-693	-0.015	-0.014
6*	73H	Cuttack	191128	86	\|20 2905	855201	$978 \cdot 660$	+0.006	+0.006
169	74A	Chatrapar	23 \J 28	13.5	192114	8459	$978 \cdot 630$	+0.046	+0.027
170	65 N	Dusi	291128	65	182200	835150	978-553	+0.016	-0.005
171	65 N	Piàrvatipuram ...	-1228	388	18450	83 1840	978.526	-0.001	-0.007
172	850	Waltair ...	121228	137	173430	83 1650	978-543	+0.055	+0.020
173	65 L	Cocanāda ..	181228	11	:65900	821440	978-492	+0.023	-0.006
17 t	65.5	Bezwãda	241228	65	163019	803746	978-451	+0.010	-0.002
175	65 C	Yellandlapãd ...	281298	720	173608	so 1905	978.435	0.000	-0.013
176	66.1	Ongole ...	$\begin{array}{llll}2 & 129\end{array}$	119	152957	8002 4?	$978 \cdot 397$	+0.010	-0.008
177	57N	Gūdur	$\begin{array}{lll}5 & 1 & 29\end{array}$	49	14.0836	795053	$978 \cdot 311$	-0.022	-0.045
2*	660	Madras	111129	20	130408	801454	$978 \cdot 282$	-0.010	-0.050
40*	576	Bangalore	$\begin{array}{ll}18 & 129\end{array}$	3118	130041	773501	978.026	+0.026	-0.024
178	57P	Yellore	26.129	691	125451	790745	978-199	-0.024	-0.042
179	is ${ }^{\text {M }}$	Cuddalore	$30 \quad 129$	26	114520	$79+520$	$978 \cdot 250$	+0.009	-0.029
IS0	58N	Negapatam	5229	15	104657	795050	$978 \cdot 190$	-0.019	-0.057
181	58	I'richinopoly	() 2 ± 9	267	1047 п8	784046	978.162	-0.02t	-0.040
182	58 E	Dindigal	$13 \quad 229$	931	102100	775901	$978 \cdot 073$	-0.035	-0.058
183	58 s	Madura	$17 \begin{array}{ll}17 & 229\end{array}$	435	95536	780824	978.105	-0.037	-0.058
Ist	33F	Chakràta	3729	6933	304.158	775210	978•819	+0.096	

[^12]TABLF .i.-Devictions of the vertical. Field season 1927-28.

* With dellections at Kaliannpur origin of $-02 \mathrm{~s} . \& 3^{\prime \prime} \cdot 17 \mathrm{~W}$.
A plas sign indicates southerly or westerly defections.

Section II

Development of Gravity Formulæ.

> by J. de Graaff Hunter, sc.d.
16. Rotating body nearly ellipsoidal.-It is easily shown that if a distribution of matter is such as to make the surface

$$
r=c\left(1+\sum_{1}^{n} U_{n}\right)
$$

a level surface of its rotation about the polar axis and of its attraction, the value of the potential at an external point is

$$
V=\frac{M}{r} \sum_{1}^{n} \frac{c^{\prime \prime} U_{n}}{r^{\prime \prime \prime}}-\frac{\omega^{2} c^{3}}{2 r^{3}}\left(\frac{1}{3}-\cos ^{2} \theta\right)
$$

correct to first order terms: where

$$
c=\text { mean radius of the surface }
$$

$M=$ mass of internal matter
U_{n} is a Laplace function of order n, small compared with unity.
From this it follows that the value of gravity at the level surface is

$$
\begin{equation*}
g_{1}=G^{\prime}\left\{1-\frac{\pi}{2} m\left(\frac{1}{3}-\cos ^{3} \theta\right)+\sum_{2}^{n}(n-1) U_{n}\right\} \tag{1}
\end{equation*}
$$

where $m G^{\prime}$ is the centrifugal force at the equator.
The ellipsoid with mean meridian ellinticitw. 1 hannerial ellipticity 1,0 and meonementront
Correction* to Geodetic Report Vol. V,

*These cortections bave not been incorporater
in Chart XIII.
in which $a=c\left(1+\frac{1}{3} \epsilon\right), h=$ height above ellipsoid

$$
A=\frac{5}{2} m-\epsilon-\frac{17}{4} m \epsilon \quad B=\frac{\epsilon}{8}(5 m-\epsilon) .
$$

For a figure not truly ellipsoidal *, represented by

$$
\begin{equation*}
r=a\left(1+v_{2}+v_{4}+\sum_{1}^{n} u_{n}\right) \tag{4}
\end{equation*}
$$

equations (1) and (3) show that gravity is

$$
\begin{equation*}
g_{3}=g_{2}+G^{\prime} \sum_{2}^{n}(n-1) u_{n} \tag{5}
\end{equation*}
$$

Green's theorem extended shows that the system may be replaced by a rotating solid ellipsoid \dagger given by (2), with a skin distribution density of magnitude

$$
\begin{equation*}
\sigma=\frac{G^{\prime}}{4 \pi k} \sum_{2}^{n}(11-1) u_{n}=\frac{\Delta c}{3} \sum_{2}^{n}(n-1) u_{n} \tag{6}
\end{equation*}
$$

placed on the actual geoid, in which k is a gravitation factor, and Δ is the mean density of the earth. The distribution may be regarded as an equivalent to the anomalies.

The potential corresponding to this is

$$
\begin{equation*}
\delta V=\frac{M}{r} \sum_{2}^{n} \frac{c^{n} n_{n}}{r^{n}} \tag{7}
\end{equation*}
$$

and the geoid rises as a result by H_{0}, where $H_{0}=c \sum_{2}^{n} u_{n}$
17. Condensation of crustal anomalies on the sur-face.-The surface density σ is hypothetical, being an infinitely thin layer of infinite density. It is possible to replace it by physically possible volume densities in an infinity of ways.

As an example consider a volume distribution in which the (lensity (nearly) constant in any vertical column is defined by

$$
\rho=\frac{G^{\prime}}{4 \pi k} \Sigma(n-1) Z_{n}\left(\frac{r^{\prime}}{r}\right)^{n}
$$

where Z, is a Laplace function of order n : and let the distribution be considered to extend between $r^{\prime}=\left(1-F_{1}^{\prime}\right) c$ and $\left(1-F_{9}\right) c$. For this consideration we may treat the approximately spheroidal surface as a sphere. Using (7) it is clear that

$$
\begin{aligned}
\delta V & =\int_{c\left(1-F_{1}\right)}^{{ }_{\left(1-F_{3}\right)}^{r}} \frac{r^{n}}{r^{n}} Z_{n} d r^{\prime} \\
& =M \Sigma \frac{Z_{n}^{\prime \prime}}{n+1}\left\{\left(1-F_{2}\right)^{n+1}-\left(1-F_{1}\right)^{n+1}\right\}\left\{\frac{c}{r}\right\}^{n+1}
\end{aligned}
$$

[^13]and this is the same as that due to σ if
\[

$$
\begin{equation*}
\frac{\left(1-F_{2}\right)^{n+1}-\left(1-F_{1}\right)^{n+1}}{(n+1)\left(F_{1}-F_{0}^{\prime}\right)} D Z_{n}=u_{n} \tag{9}
\end{equation*}
$$

\]

where $D=\left(F_{1}-F_{2}\right) c=$ thickness of the distribution.
Put $F_{1}=f+\frac{1}{2} \delta f, F_{2}=f-\frac{1}{2} \delta f$, and $\Delta f=\delta f / 2(1-f)$.
Then (9) may be written
$\frac{u_{n}}{D Z_{n}}=(1-f)^{n}\left\{1+\frac{n(n-1)}{\underline{3}} \Delta f^{2}+\frac{n(n-1)(n-2)(n-3)}{\underline{5}} \Delta f^{4}\right\}$
which shows that for sufficiently small values of $f n u_{n}=D Z_{n}$, and the distribution through a finite thickness causes little change. In other words gravity anomalies at the surface can give little information as to the mean depth or vertical distribution of the density anomalies of long period.

The second factor in the right hand side of (10) shows the effect of uniform distribution about a mean depth. Thus for a uniform distribution through a depth of 70 miles, as in Hayford's compensation, for which $\Delta f=1 / 113$, the result is only 10% different from that due to concentration at the mean depth of 35 miles if $n-\frac{1}{2} \fallingdotseq 113 \sqrt{\frac{6}{10}}$ or $n=87$, showing that this vertical distribation is relatively unimportant for features of extent $24800 / 2 \times 87$, say 140 miles or less. Consequently gravity anomalies in such cases cannot distinguish between various distributions about a mean depth. For $n=87$ and $f=1 / 113$, however, $(1-f)^{n}=\cdot 46$, showing a great difference between surface distribution and distribution at a mean depth of 35 miles. For this mean depth to have no more than 10% effect, r must be kept less than 11, corresponding to a feature of some $1,000 \mathrm{miles}$ in extent. For convenience of reference values of $u_{n} / D Z_{n}$ are tabulated for various values of n.

	Mean depth $3 \overline{\text { miles }}$		Mean depth 40 miles	
n	At 35	Between 0 and 70	At 40	Between 10 aud 70
10	- 915	. 914	-903	. 900
50	$\cdot 64.1$	-666	-605	-603
100	. 411	-467	-366	- 398
300	.070	-181;	-049	-101
500	. 012	. 113	. 007	. 021

The table indicates how large an anomaly is required for features of 2.5 miles extent $(n=500)$ if this is distributed between depths of 10 and 70 miles - more than 5 times as much as if the distribution extends downwards from the surface.

It seems reasonable to attribute such equivalent hypothetical surface anomalies to density anomalies at a small depth, above the level at which the earth may be considered plastic. The dividing point between shallow and deep anomalies however cannot be derived from geodetic evidence alone.
18. Corrections for topography.-The formulæ of $\S 16$ are for a figure whose matter lies entirely within the level surfaces concerned. In the case of the earth allowance must be made for topography external to the geoid.

The effect of this external topography on both the geoidal rise and the force of gravity can be calculated. Starting with belief in a certain degree of regional compensation, and also for computational convenience, we may combine with each feature a corresponding negative mass of equal amount at or below the geoid. It is at present undecided as to whether this should be done by means of a concentrated skin distribution in keeping with the quantity σ already employed. In doing so it is feasible to take the compensation on a regional basis, that is, with each vertical element of topography to associate a disc of compensatory negative skin density of any chosen radius. Whatever is finally decided in this respect, the effect on (5) may be denoted by δg_{c} and on (8) by δH_{l}, and these equations may be replaced by

$$
\begin{align*}
& g_{4}=g_{2}+\delta g_{l}+G^{\prime} \sum_{2}^{n}(n-1) u_{n} \tag{11}\\
& H_{0}=\delta H_{l}+c \sum_{2}^{n} u_{n} \tag{12}
\end{align*}
$$

It is to be remembered that in g_{2} the quantity h is the height above the ellipsoid. This may be replaced by

$$
\begin{equation*}
h^{\prime}+H_{0}-\delta H_{l}=h \tag{13}
\end{equation*}
$$

so that

$$
\begin{align*}
g_{2}= & G^{\prime}\left\{1+A \sin ^{2} \phi-B \sin ^{2} 2 \phi+C \cos ^{2} \phi \cos 2\left(\lambda-\lambda_{0}\right)\right. \\
& \left.-\frac{2}{a}\left(h^{\prime}+H_{0}-\delta H_{t}\right)\left(1+\epsilon+m+3 \sin ^{2} \phi\left(\frac{5}{6} m-\epsilon\right)\right)\right\} \tag{14}
\end{align*}
$$

In this h^{\prime} is the height above the geoid.
The anomaly σ is now to be regarded as placed on the corrected geoid whose form is denoted by (12).
19. Relation between deflections and gravity ano-malies.-It is to be noted that if the form of the geoid is known from deflection results, then theoretically (12) allows u_{n} to be determined, and (11) expresses the corresponding value of travity; alternatively if the gravity anomalies are known, u_{n} can bo found therefrom. In practice however the observational results are incomplete, and the best use must be made of available deflections and g anomalies. These latter give directly the local crustal equivalent
anomaly at any place where g has been observed; which in itself is a satisfactory result to arrive at. In so far as these crustal anomalies exist, the particular form of compensation assumed as a basis of computation (see $\$ 18$ above) is disproved : it is none the less a useful standard of reference.
20. Major Glennie's relation.-In Section I of this chapter Major Glennie suggests a linear relation between the gravity anomalies found in India and the rise of geoid. This implies that
$G^{\prime} \sum_{2}^{n}(n-1) u_{n}-\frac{H_{0}-\delta H_{L}}{a} 2 G^{\prime} \fallingdotseq-K\left(H_{0}-\delta H_{t}\right)=K a \sum_{2}^{n} u_{n} \ldots$
a result which cannot be strictly true, unless only one harmonic exists, when the equation becomes

$$
n-1=-\left(K-\frac{2 G^{\prime}}{a}\right) \frac{a}{G^{\prime}}
$$

The value found by Major Glemie for K (in terms of the International spheroid) is $\cdot 0019=\cdot 0017+\frac{2 G^{\prime}}{a}$

$$
\begin{aligned}
& \text { Hence } n-1=\frac{\cdot 0017 \times 2 \cdot 09 \times 10^{7}}{0.978 \times 10^{3}}=36 \cdot 3 \\
& \text { or } \quad n \quad=37 \cdot 3
\end{aligned}
$$

which corresponds with an average angular period of $360 / n=10^{\circ}$. An examination of the geoid in India (deduced from deflections) shows a rough periodicity in angular amount 12°. To this figure would correspond a value of $K=\cdot 0016$, which goes some way to explain the empirical result. More precise analysis of the geoid might perhaps bring about a closer accord; on the other hand Major Glennie's value may be modified when deduced from a more fully distributed set of gravity observations.

Without doubt the geoidal features represented by the lower harmonics are due to anomalies of density of great extent; and it seems reasonable to suppose that a very considerable portion of these lies at some considerable depth, such as 50 miles. In considering the local anomaly at a station of observation, interest centres on the anomalies close to the surface, i.e. within the reach of mines. From this point of view then it may be of interest to remove from the anomalies, reckoned from the spheroidal formula, the effect due to the generalised crustal anomalies found from the geoid as determined from deflection results. The residual anomaly is then more localised and likely to be of industrial interest. This process may be carried out without the harmonic analysis of anomalies, much more completely than by the application of Major Glemie's empirical term, which really hinges on the geoid being capable of representation by the 37th spherical harmonic. Captain Bomford has computed the crustal anomalies which will account for the geoid's form in India: and therefrom the corresponding gravity anomalies
follow immediately. The difference between these and the actual anomalies found by gravity observations, appear to be quantities of industrial interest.

Section III

by Captain G. Bomford, r.e.

21. Summary.-From the shape of the Indian geoid a set of mass unomalies are deduced, which would be competent to explain the shape of the geoid. Although these masses cannot be uniquely determined, the solution given is considered to be a minimum solution : no other possible set of anomalies could have a total mass much smaller than that now given. The anomalies found are both intense and extensive; but, while they give definite disproof of the accuracy of the usual Hayford system for computing compensation, they do not definitely disprove the existence of regional hydrostatic equilibrium.

The Indian isostatic geoid has been computed, and is compared with the actual geoid. The lack of resemblance between the two surfaces gives further proof of the inaccuracy of the Hayford system in India.

No system is proposed as an alternative to Hayford's.
The probability of a correlation between geological surface densities and the expression $g-\gamma_{\mathrm{D}}$ (introduced by Major Glennie in para 11 of this chapter) is examined. It is concluded that in India the correlation is not likely to be finally established.

A table is given to facilitate the computation of the geoidal rise due to different masses; such a table is required for the computation of the isostatic geoid.
22. Anomalies deduced from geoid.-The compensated genid (see para 12) is an equipotential surface of the standard spheriod* and of the anomalies or departures from Hayford's hypothetical mass distribution. A knowledge of the form of one equipotential does not suffice to determine the masses to which it is related, but in the present case the problem may be simplified by the assumption that the anomalies occur reasonably near the surface \dagger (say within 70 miles), and, if this depth is two or three times smaller than the horizontal extent of the main features, further knowledge of their depth is comparatively umimportant. An infinity of possible solutions still remains, but if a solution is found in which the distribution of the anomalies is in obviously close relationship to the

[^14]contours of the equipotential which they are required to produce, that solution will to some extent be a measure of the minimum total* mass of the anomalies. For instance, a local elevation of the Indian geoid of specified height and shape can be caused by a suitable distribution of mass beneath it. It could also, conceivably, be caused by a suitable distribution of positive and negative masses in France, or any other part of the world, but this second distribution would involve very much larger masses than the first, and would involve practical impossibilities.

Working on this basis, that the anomalies are to be as small as possible, a solution has been found by trial and error. The spheroid adopted is the International spheroid, so oriented, as regards its deflections at the origin, as to make the best possible fit with the Indian compensated geoid. (See Chart XII). As a first aproximation the country was divided into blocks 150 by 150 miles in horizontal extent, each containing a mass anomaly proportional to the mean height of the geoid overlying them, distributed through a depth of 70 miles. The total potential of these masses was calculated at 14 points typifying the geoid, and thence was found the height of the geoid at these points. The masses were then modified, and after a few trials the geoid was approximately fitted.

The 150 by 150 mile blocks were then broken up into 50 by 50 mile blocks, and the process was repeated, the geoid being fitted at 56 points. After repeated trials a solution was found such that the geoid was correctly fitted within two or three feet at each of these pionts.

Chart XIV shows the resulting mass anomalies, the 50 mile blocks being replaced by contours of equal mass per unit area. The unit employed is the mass of a layer of rock (density $2 \cdot 67$) one foot thick, and the contours are at 1000 -foot intervals. It may be repeated that the geoid, as obtained from deflections in India, is an equipotential surface of the standard spheroid plus the actual topography (assumed to be of density 2.67) plus Hayford compensation $p^{\text {/us }}$ thes: anomalies.

Th intensity and extent of the anomalies is very considerable. Thus, in the Gangetic plain there is an area of 100,000 square miles in which the ammaly is equivalent to between $-1,000$ and $-6,700$ fon' of rock: north of Nägpur there are 50,000 square miles in which the anomaly is between $+1,000$ and $+3,700$ feet.

The above figures are only measures of the failure of isostasy in India, if the Hayford system is interpreted in its narrowest sense, namely that all surface rocks are of density $2 \cdot 67$, that the proper compensation is evenly distributed between ground level and a depth of 70 miles, and that it lies vertically under the feature which it compensates. More broadly the principle of isostasy may be taken

[^15]to mean that areas of reasonable size stand in hydrostatic equilibrium, and in this broader sense the failure of isostasy is not so clearly established. Thus the 25 -foot elevation of the geoid north of Nägpur would be accounted for if in the 50,000 square miles concerned the superficial rocks were 10% overdense for a depth of 10 miles, even though this excess was compensated throughout the next 60 miles. If the excess density covered 250,000 square miles, a thickness of 40,000 feet would suffice.

In the same way the depression in the Gangetic plain requires for its explanation an even greater thickness of low density sediments, greater, not only because the geoidal depression is rather more than 25 feet, but because it is closely adjacent to the apparently overdense Himalaya on the north : the defect in the plains has to counteract the tendency of this excess to raise the surrounding geoid.

Thus, although the Indian geoid offers considerable disproof of the accuracy of Hayford's detailed system, yet it does not offer positive disproof of regional hydrostatic equilibrium in a broad sense. At the same time it cannot be said that deductions from the Indian geoid contribute anything towards the proof of isostasy: on the contrary, the geodetic facts are only brought in line with the isostatic principle, in its broadest sense, by assuming the existence of very extensive abnormal rock densities of which there is no other evidence.
23. The isostatic geoid.-In a recent publication* Dr. Bowie has stated "The proof of isostasy has made it possible to compute an approximate geoid without all these (pendulum and deflection) observational data". The geoid so computed has been called the isostatic geoid by the Gravity Commission of the Geodetic and Geophysical Union. The Indian isostatic geoid is shown in Chart IX. The lack of resemblance between it and the actual geoid, as shown in Chart X, is a measure of the success of the computation. A geoid calculated on the assumption of no compensation at all would, of course, be still less successful, but Chart IX cannot be deseribed as a useful approximation to Chart X. So far as is known, genids of large areas based on observational data have only been drawt: in the United Statest and in India \ddagger. In the second of these areas Dr. Bowie's proposed computation gives no useful approximation : i: the U.S. it probably does better, for that is a less anomalous country than India. But until geoids have been drawn in many other countries, and unless the isostatic geoid is then found to be a fair approximation to the true geoid in those countries, it is not possibi, to accept the statement that the isostatic computation is a useful substitute for observational data.

The alowe criticism of Hayford's system does not imply that that systrmi can be improved on. Some simple and well defined system is assential as a standard, and no alternative system is now suggested.

[^16]24. Gravity deduced from geoid.-At any point it is easy to compute the vertical attraction of the anomalous masses deduced from the geoid in para 22 . This has been done, and the result is exhibited in Chart XV. If the method of computing the anomalies was perfect, these attractions would everywhere be equal to $g-\gamma_{\mathrm{C}}$, the usual Hayford anomaly based on pendulum observations, as shown in Chart VII. Inspection of Charts VII and XV shows that there are some very material differences. At any station let this difference, $g-\gamma_{c}$ minus the value deduced from the geoid, be designated E, so that $E=$ Chart VШ-Chart XV. Then ideally E should always be zero.

This quantity E is analogous to Major Glennie's $g-\gamma_{11}$ (para 11 of this chapter), the difference being that $g-\gamma_{0}$ is implicitly based on the assumption that the geoid can be fairly represented by a single spherical harmonic, whereas E is based on a mass distribution which, although many assumptions are involved in its choice, would at least produce the general outlines of the actual geoid. On these grounds it is thought to have some advantage over $g-\gamma_{\mathrm{D}}$ as a basis for further discussion, although the sources of error described below (some of which apply to $g-\gamma_{D}$ with equal force), are such that this advantage may be more apparent than real.

Reasons why E is not everywhere zero are as follows:-
(a) The choice of an unsuitable reference spheroid. The magnitude of the anomalies deduced from the spheroid depends vitally on the height of the geoid above the spheroid of reference; a different spheroid of reference, or a change in the accepted deflections at the origin, will produce a different set of anomalies, and different values of their vertical attractions. But $g-\gamma_{c}$ is much less sensitive to a change of spheroid, so that the value of E will vary considerably, according to the spheroid used. On these grounds E may form a suitable basis for investigation of the Earth's figure. If it tends to be positive in some areas and negative in others, the accepted spheroid may be modified so as to lessen these inconsistencies. This computation has not been carried out in India: on account of the comparatively limited area of the gravity survey the weight of the result would not be comparable with that of spheroids obtainell by more usual methods.
(b) The effect of unexplored areas outside the survey. It is noticeable, for example, that the geoid is raised in the extreme south of India, and that the deduced anomalies are positive, wherens $g-\gamma_{C}$ is negative; hence a large value of E. The apparent rise of the greoid may be due to a bad choice of spheroid, or it may be due to unmeasured positive anomalies in Ceylon and the neighbouring ocean. It is doubts of this kind which, for the purpose of finding the figure of the Earth. restrict the utility of E to very large areas of survey.
(c) Local anomalies. A very localised excess of density may cause a large positive value of $g-\gamma_{C}$, but it will have little effect on the shape of the geoid, and it will not be reflected in the attractions deduced therefrom. Consequently E will be positive.
(d) Ambiguity in the process by which the anomalies are deduced. For example, a small feature of the geoid, such as the spur of high density near Bombay, may be caused by an intense excess of mass in a small area, or by a less intense excess in a larger one. Unless the shape of the geoidal contours is known in detail the distribution of the anomalies is quite arbitrary, and since their vertical attraction depends more on their intensity than on their horizontal extent, a large value of E may result. Further, the vertical distribution of the anomalies may not be as postulated.
(e) The geoid is based on a limited amount of observational data. lts contours may be imperfectly drawn.
As a measure of the effect of these various sources of discrepancy, it may be noted that at individual stations the mean value of E is very little less than that of $g-\gamma_{\mathrm{C}}$. But if local and marginal effects are eliminated by the meaning together (with regard to sign) of all the values of E in fairly large areas, the discrepancy is considerably reduced. Thus in all 4-degree squares in which 8 or more gravity stations exist, this mean averages only •005, compared with the figure of 015 for the means of $g-\gamma_{c}$.
25. Correlation with Geology.-In para 14 Major Glennie has brought forward a correlation between his $g-\gamma_{D}$ and the density of the surface rocks. It is obvious that, if the rocks underlying one of two neighbouring stations are more dense than those underlying the other, $g-\gamma_{\mathrm{C}}$ may be expected to be the greater over the first station ; and, since H, the geoidal height, generally varies slowly with distance, $g-\gamma_{\nu}\left(=g-\gamma_{c}-K H\right)$ also may be expected to be greater. But this consideration by itself does not establish the likelihood of a correlation between $g-\gamma_{D}$ and the surface density in widely separated areas.

Table 6 gives (a) the vertical attraction of, and (b) the geoidal rise due to, an excess density of 10% in surface rocks of specified thickness covering a circular area of specified radius. The figures apply to the centre of the area. The greatest depth given (2 miles) is certainly the greatest at which geologists, unsupplied with geodetic data, would hazard a guess as to the comparative density of the crust at the same depth in different areas; and 10% excess or defect of density is a large, although perhaps not quite a maximum, abnormality for the average density of the surface rocks of any considerable area. It is noticeable that the attractions given are not very large, so that, except in the case of density
anomalies of as much as 10%, at least a mile thick, and covering a fairly limited area (under 100 miles diameter), the correlation can only be expected if $g-\gamma_{D}$ is remarkably free from all other sources of discrepancy. Now the average value of $g-\gamma_{D}$ (without regard to sign) is about $\cdot 020$. Then, if $g-\gamma_{D}$ is to be correlated with the geology, i.e. if its values are to be attributed to the excessive or defective attraction of high or low density surface rocks, it must be concluded that a typical surface anomaly is one which will produce attractions of $\cdot 020 \mathrm{~cm} / \mathrm{sec}^{2}$. Table 6 shows that such an anomaly is a 10% excess density, 2 miles thick, covering an area not more than 100 miles in diameter. It is thought that geologists will hardly admit that such anomalies are typical; that in any area selected at random, the anomaly is as likely to be more striking as it is to be less. And whether such anomalies do exist or not, it is thought that no geologist will be able to produce, from the data of his own science, the evidence or even speculation necessary to establish the correlation.

A second reason for expecting no correlation is the fact mentioned by Major Glennie in para 14, namely that large areas of superficial excess will themselves cause a geoidal rise (an increase of H), which will result in diminution of $g-\gamma_{D}$. Table 6 shows that in the centre of an area 200 miles in diameter $02 H$ (i.e. $K H$) is about equal to the attraction, so that in such a case $y-\gamma_{D}$ should be zero, and in the centre of areas of greater extent the correlation with density should be negative. India is a country of large features, and it is not unusual for rocks of roughly similar density to be typical of areas as large as this.

The table given in para 14 hardly goes far enough to establish the correlation. In view of the difficulties outlined above, an empirical correlation will have to be remarkably strong, before it can be accepted as a fact.

In the above discussion it has been accepted as a standard, that excess superficial density is compensated in exactly the same way as topography of normal mass; it would be hard to argue in support of a system in which the compensation is appropriate to topography of true voiume, but of exactly normal density, while any excess or defect of mass, which may be due to abnormal density, remains uncompensaterl. But if such a state should be considered reasonable, reference to Table 7 will show that it is no explanation of the difficultics met with on the more reasonable hypothesis, and that the corrclation remains equally hard to explain.

TABLE 6.-Attraction in $\mathrm{cm} / \mathrm{sec}^{2}$ (upper figure), and geoidal rise in feet (lower figure) at centre of disc of rock 10% overdense, of given radius and thickness, duly compensated.

Thickness	$\frac{1}{4}$ mile	$\frac{1}{2}$ mile	2 miles
5 miles	0.004	. 008	. 027
	$0 \cdot 1$	$0 \cdot 2$	0.7
25 miles	-003	. 006	. 025
	$0 \cdot 3$	0.7	$2 \cdot 7$
100 miles	- 001	. 003	. 012
	0.6	$1 \cdot 3$	$5 \cdot 2$
400 miles	-000	. 001	. 003
	$0 \cdot 8$	1.6	$6 \cdot 5$

For other density anomalies multiply in simple proportion.
TABLE 7.-As Table 6, but without compensation.

l'bickness Radius	4 mile	$\frac{1}{2}$ mile	2 miles
5 miles	$\begin{aligned} & .004 \\ & 0.1 \end{aligned}$.009 0.2	${ }_{0}^{.030}$
25 miles	${ }^{.005}$.009 1.2	$5^{.035}$
100 miles	$\begin{aligned} & \cdot 005 \\ & 2 \cdot 5 \end{aligned}$	${ }_{5 \cdot} \cdot 009$	$20 \cdot 037$
400 miles	${ }_{10} \cdot 005$	$20 \cdot 009$	$80 \cdot 037$

26. Computation of Geoidal Rise. - In the computation of the isostatic geoid and of Tables 6 and 7, it has been necessary to calculate the geoidal rise at a given point, due to specified masses. The computation of the geoidal rise due to surrounding topography is a very easy computation, if only moderate accuracy is required, i.e. if an error of one or two feet can be tolerated.

Let the country be divided up into zones of radii r_{2} (greater) and r_{1}, let the average height of any zone above sea-level be h, let the surface density be δ, and the Earth's mean density Δ, and let the Earth's mean radius be R. Let V be the potential of the uncompensated topography in any one zone, and let Y be the resulting geoidal rise.

Then $\left.V=2 \pi \delta \int_{r_{1}}^{r_{9}} \frac{h}{2} \sqrt{r^{2}+h^{2}}+\frac{r^{2}}{2} \log _{e} \frac{1}{r}\left(h+\sqrt{r^{2}+h^{2}}\right)-\frac{h^{2}}{2}\right]$
and $Y=3 V / 4 \pi R \Delta$.
In the case of compensation, the "height" is always-70 miles, and the density is $h \delta / 70$, the formulæ being the same. For compensated topography the rise is the rise due to the topography minus the rise due to the compensation.

Table 8 gives the geoidal rise due to compensated topography of different heights in zones of different radii. The zones are rather broad, and if the bulk of the mass in any one zone is situated near its inner border some inaccuracy will result. But a zone in which all the mass is concentrated near the inner border cannot be expected to have a great average height, and in any case a certain amount of cancelling of error is to be expected; it is thought that the use of these wide zones will not introduce errors of more than a couple of feet at most, except possibly in the innermost zone. This zone has deliberately been kept fairly large, for, when preparing such a figure as the isostatic geoid, it is desired to obtain the general geoidal level near each of the points selected for computation: it is not desired to obtain the abnormally high values which would result if the selected point happened to be near the top of a small peak.

As it stands, the table is not intended for the detailed computation of the geoidal rise between two near points such as Dehra Dūn and Mussoorie (see Chapter VII). It has been used for the construction of the charts showing the compensated and isostatic geoids, for which purpose the three inner zones have been combined, in order to give a suitably generalised result.

$\varepsilon 008 /$ س

Reg. No. 30 D.D.D. 1930 (C.O.)-S. I-500. REFERENCES

Gravity Stations season 1927-28
previous seasons
Free air Gravity anomalies $\ldots . .+0.005 \mathrm{Cm} / \mathrm{sec}^{2}$
Deflections: Everest's Spheroid: 1927-28 \longrightarrow

Scale $\frac{1}{5,000,000}$ or 1.014 Inches to 80 Miles 100 Miles

Deflection Scale $1 \mathrm{Cm}=5^{\prime \prime}$

Helio. S.I.O. Dehra Dūn Hayford gravity anomaly contours

To accompany Geodetic Report Vol. V

[^17]

TABLE 8.-Geoidal Rise (in feet) due to compensated topography.

	8 ¢ -	® \#	$\overrightarrow{0}$	0 20	$\stackrel{\infty}{\dot{0}}$	$\stackrel{\rightharpoonup}{9}$
	$\stackrel{8}{8}$	$\underset{\sim}{\text { ® }}$	-	$\stackrel{\sim}{\dot{\oplus}}$	-i	$\stackrel{\infty}{\square}$
	80809	$\stackrel{1}{\text { a }}$ \sim	$\stackrel{\square}{\text { ¢ }}$	¢ ¢	$\stackrel{\sim}{\dot{\sim}}$	$\stackrel{0}{0}$
	8	$\stackrel{ \pm}{7}$	$\stackrel{\square}{\square}$	$\stackrel{\stackrel{-}{-}}{\sim}$	¢	$\stackrel{\overbrace{}}{¢}$
	$\stackrel{8}{\infty}$	$\stackrel{\text { ヘ }}{\text { ¢ }}$	¢	$\stackrel{\square}{i}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\bigcirc}{\infty}$
	8	$\stackrel{\otimes}{\infty}$	$\stackrel{\sim}{\dot{\circ}}$	$\stackrel{0}{\infty}$	$\overrightarrow{-}$	$\overrightarrow{-}$
	8	$\stackrel{\infty}{-1}$	$\stackrel{\infty}{-}$	$\stackrel{\rightharpoonup}{i}$	9	$\stackrel{\text { N }}{0}$
	合	8	$\stackrel{\ominus}{\bullet}$	$\stackrel{\circ}{i}$	is	$\stackrel{\infty}{i}$
	\%	$\stackrel{\sim}{\sim}$	$\stackrel{+}{\square}$	$\stackrel{\sim}{-}$	$\stackrel{\text { N }}{+}$	$\stackrel{+}{+}$
	8	$\stackrel{\infty}{\dot{\infty}}$	\cdots	$\stackrel{\square}{\div}$	$\stackrel{\%}{\infty}$	$\stackrel{\square}{\infty}$
	O	$\stackrel{\oplus}{\text { cis }}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\sim}$	$\stackrel{\because}{\sim}$	$\stackrel{0}{i}$
	$\underset{-1}{8}$	$\stackrel{\square}{-}$	$\stackrel{+}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\Im}{-}$	$\stackrel{\overbrace{}}{-}$
		0 0 0 4		$\begin{aligned} & \circ \\ & 0 \\ & \circ \\ & \text { N } \\ & 0 \end{aligned}$	8 0 0 0 0 0	

The depth of sea zones should be maltiplied by $\cdot 615$; the rise is of course negative.

Chapter V

TRIANGULATION

by Captain G. Bompord, r.e.

1. Summary.-The season's programme consisted of primary triangulation in Burma with two detachments, both using Wild Precision (51 ${ }^{\prime \prime}$) theodolites. This was the first occasion on which the Wild type of theodolite has been used for primary triangulation by the Survey of India.

No. 1 Detachment, under Mr. B.L. Gulatee undertook the observation of the Chittagong series, a longitudinal series about 125 miles long, connecting the Burma Coast and Manipur Meridional series in latitude $22 \frac{1}{2}^{\circ} \mathrm{E}$. The series was completed except for a few observations near Chittagong which had to be left until next year. The accuracy of observation was satisfactory, the mean triangular error being $0^{\prime \prime} \cdot 59$, and the value of n (the mean square error of an angle) being $0^{\prime \prime} \cdot 41$.

No. 2 Detachment, under Mr. P.K. Ghosh undertook the reobservation of part of the Mong Hsat secondary series, and made a connection with the triangulators of the Siamese Survey in Lat. $20^{\circ} \mathrm{N}$. Long. 99° E. The Mong Hsat series runs westwards from this junction to the Mandalay Meridional series in Long. 97° E., a distance of 170 miles. About half the observations were completed, but a defect in the theodolite, combined with the inexperience of the observer, resulted in the observations being faulty, and the work will have to be reneated next year.

From the beginning of the season until the end of December no officer was available to take active charge of the party, which was consequently administered at different times by the officers in charse of the Pendulum and Computing Parties. Captain Bomford was then in charge until the end of April. During recess Lieut. Cadell and Mr. N.R. Mazumdar held charge at different times. These frequent changes, although unavoidable, were detrimental to the efficiency of the party, and the lack of a full time officer in charge at the beginning of the season, when the observing personnel was untrained in geodetic triangulation, must be considered a contributary cause of the failure of No. 2 Detachment.

The Wild Precision theodolites, on which a fuller report is given later (para 5), both exhibited serioue defects, but give ereat

Reference numbers and Values of " m " and " M " for all Geodetic Series of the Indian I'riangulation: (See Records of the Survey of India Vol. IX, p. 137).
For 42 Sries entering the Simultnneous Grinding (shown in italics below) Mean Square $\mathrm{M}= \pm 104$ For Series up to No. 99

Mean Square $M= \pm 1: 53$

promise for the future. It is expected that in future they will combine an accuracy at least equal to that of the 12 -inch theodolites with their many undoubted advantages over the older type of instrument.

The season's work brought to light the necessity for a revision of that part of the handbook which deals with geodetic triangulation. The preparation of a new handbook has been taken in hand, and about half has been completed.

A small detachment under B. Mukhtar Ahmed, administered by 0.C. 14 Party (Pendulum) was employed on the locating and repairing of the East Coast series from Balasore towards the south. The sea has encroached in places, and many new villages have sprung up, with the result that out of 49 stations visited, only 20 could be definitely located and repaired.
2. Chittagong Series.-The stations of this series are shown in Chart XVII. Except for the connection with the Manipur Meridional series at the east end, the reconnaissance was made and the stations built as long ago as 1914-15, but the long break in geodetic work which resulted from the war, caused the observations to be postponed until 14 years later. In the middle of the series the figures are considerably weaker than has been usual for primary triangulation in India, but the country is difficult, and a less narrow series would have added considerably to the difficulties of observation.

Work was started at the west end of the series at the beginning of October. As reconnoitred, the series connected with the Burma Coast series at Mora Tān, Kurla and Sitapahār hill stations, but after clearing these and some forward stations, and after observing at Kurla and Mora Tan, it was discovered that the stations at Foromoin and Sitapahar were not intervisible. To have recommenced the series from a fresh base at this stage would have involved considerable delay and disorganisation of all arrangements. In view of the fact that it was possible to compute the series without the missing angles, although not by the orthodox method, Mr. Gulatee decided to keep to his original plan, without visiting any additional stations. It was afterwards decided that the comection must be strengthened by further observations at Sitapahar, Gilaclihari, Phukamoin and Mullianphui, but it was not possible to complete them during the season.

From this point work proceeded rapidly as far as the stations Lungleng and Blue Mountain, excellent triangular errors being: obtaivel, but the theodolite then began to show some signs of stiffurs in its vertical axis. Olservations at these two stations were completed, but after the march forward to Haka the axis was found to be unworkably stiff. No provision is made for oiling the axis of the Wild theodolite, and efforts to introduce oil were not successful. The construction of the Wild is not such that the
instrument can lightly be dismantled in the field, and it was accordingly taken to Calcutta for repair at the Mathematical Instrument Office. It was there taken down with some difficulty, and the fault was corrected. But a month had been wasted.

Before taking the theodolite to Calcutta Mr. Gulatee had completed the reconnaissance of the east end of the series, and had built a new station at Mongklang. When observations were recommenced at Zemuklang on February 23rd on his return from Calcutta, the visibility, which had previously been good, had become considerably worse by reason of the haze which is always found in Burma at that time. On account of the haze the observations could only be completed with great difficulty, and the work closed on the base Waibula-Wone-lone-taung on March 17th. At this time of the year it was quite out of the question to return to Chittagong and complete the connection with the Burma Coast series, and the detachment returned to India via the Chindwin river and Rangoon.

In addition to the loss of a month's work, the stiffness of the theodolite's axis at Lungleng and Blue Mountain, combined with the bad visibility at Zemuklang and Zovailangklang caused rather exceptionally large triangular errors in the quadrilateral formed by these four stations. The closures there averaged $1^{\prime \prime} \cdot 03$, as compared with $0 \prime \cdot 47$ in the rest of the series.

Observations were made generally by day, sometimes by night, the former to 9 -inch helios, and the latter to oil lamps. Unti] February the visibility was generally good in the morning and after 4 p.m., but between $10 \mathrm{a} . \mathrm{m}$. and $4 \mathrm{p} . \mathrm{m}$. the higher hill tops were usually obscured by mist rising from the valleys; thus, although there was no difficulty in observing horizontal angles, the vertical angles could not always be observed during the hours of minimum refraction.

The strength of the rletachment was one observer, one assistant (Upper Subordinate Service), one recorder and 50 khalasis. Health was poor. In the Chittagong Hill Tracts much sickness was caused by fever, and in the higher hills the khatasis suffered from the cold. One khalasi died of peremonial in the Lushai Hills.

The country passed through is not easy for triangulation. Except on the Karnaphuli river and the Falam-Kalemyo road, only cooly transport can be used, and coolies are not easily obtained. From Chittagong to Demagsiri, the Kamaphuli river constitutes a central line of communication, hut hills far from the river are only reached with difficulty. From Demagiri there is only a cooly track through Lungleh to Haka in the Chin Hills, and supplies in the Lushai Hills can only be obtained from Lungleh. In the west the low hills are covered with dense bamboo jungle. The higher hills in the east are less thickly covered, but except Yetagong and Waibula they are not easy of access.
3. Mong Hsat Series.-This series had been observed with poor secondary accuracy in 1891-93. In recent years the extension of primary triangulation by the Siamese Survey has led to the possibility of a connection with the Indian triangulation at the east end of the Mong Hsat series. The 1928-29 programme was to make the connection with the Siamese triangulators, and to reobserve as much as possible of the old series.

Some of the figures of the old secondary series were very weak. Changes were made in the position of a few of the stations, which improved the lay-out a little, but some figures remained much weaker than is usual. As in the case of the Chittagong series, the difficulty of communication (at the east end) is such that any considerable improvement can only be obtained at the expense of much delay. It may be remarked, however, that these weak figures need not result in any weakness in the triangulation as a whole, provided they are associated with a closer base control than is usual. The provision of additional bases in Burma is now under consideration.

The detachment left Dehra Dūn on 19th September, and met the Siamese observers on the far side of the frontier on 3rd November, where it was arranged to make the connection by both parties' observing all three angles of the triangle Loi Pahompok, Loi Pakulin, Loi Tum.

At Loi Pakulin, the second station, the vertical axis of the Wild theodolite, which had always been too stiff, became so stiff as to be unusable. 'To have taken it to Calcutta, or to have waited for a new theodolite, would have resulted in the loss of nearly the whole season's work, and Mr. Ghosh accordingly took down the theodolite and oiled the axis. He reassembled the instrument successfully, and it then returned to its former condition of stiffness, namely workable but, as it turned out, too stiff for accurate work.

The observations then proceeded rather slowly, being hampered by cloudy weather. At Loi Salu the theodolite again became impossibly stiff and had to be dismantled. After the end of Janu: ry the usual Burma haze caused difficulty, but the short sides betwen Loi Nan, Loi Lom and Loi Kaha enabled work to be continued as far as the side Loi Lom-Loi Kaha, where the detachment censed work on February 23rd.

Olservations were made partly by day and partly by niglit, the majority being by day, as in the Chittagong series. Cloudy vanther caused some difficulty with helios, and delay was also caused by mist and haze.

The health of the detachment was poor, especially in the canjy part of the season when there was much malaria. One khalasi died.

Commmications to the east of Loi Salu consist of hill tracks, generally passable for ponies. The hills are steep and the river valleys deeply cut, but it was found possible to get pony transport
up to most of the stations. West of Möngnai the country consists of very pleasant rolling downs with some rocky ridges, and a number of fair weather motor tracks.
4. Computations. - In view of the large triangular errors of the Mong Hsat series (average over $4^{\prime \prime}$), only the Chittagong series was computed. The computations were begun from the east end, and carried up to the side Barkal-Mullianphui, beyond which they will be affected by the observations to be made next year. The computations followed the usual procedure, except that some saving was made in the computation of the weights of the angles, and some irregularity in the computation of heights was necessitated by the fact of their sometimes having been observed early in the day.

The system by which weights have previously been computed involves a full page of computation on form 7 Trian. for each angle. In view of the fact that unknown systematic errors probably have at least as serious an effect on the result of an angle, as do the casual errors of graduation and observation, so much labour is not justified. A shorter method was therefore adopted as follows. Let v_{1}, v_{s}, etc., be the differences between the general mean value of the angle, and the mean of the measures on each of n zeros, then the probable error of the general mean is $\frac{\cdot 845 \Sigma|r|}{n \sqrt{n-1}}$, and the weight is given by $w=\frac{1}{(\mu \cdot e .)^{2}}=\frac{1 \cdot+1 n^{2}(11-1)}{(\Sigma|x|)^{2}}$ where $\Sigma|v|$ indicates the sum of v_{1}, v_{2}, etc., without regard to sign.

Some details of the height computations are given in the appendix to this chapter.
5. Wild Precision Theodolites.--The experience of the Survey of India with the Wild Precision theodolite has not been fortunate. The speed of work, and ease of transport is fully appreciated, but in their first season (1928-29) instrumental defects have resulted in considerable loss. These defects are summarized below :-

No. 59-(1) The vertical axis stiffened after observations at nine stations. It recovered after oiling.
(2) Towards the end of the season the horizontal axis showed some stiffness.
(3) Movmment of the rertical slow motion screw causes a difference of several seconds in the horizontal pointing, accorling to the direction in which the serew is last turned. This defect was not noticed at first, and may not have developed until after the theodolite was first dismantled.
(t) The illumination of the cross wires is inadequate. Illumination has always had to be provided by torch through the object glass.
(5) The images of the two opposite sides of the horizontal circle are not now brought to a focus in a common plane. The error is small and there is no serious parallax, but some observers are troubled by the impossibility of getting both images in perfect focus. This defect also probably developed after the theodolite had been dismantled in India.
No. 37-(6) The vertical axis is permanently stiff ; too stiff for accurate work. Every few months it has become so stiff that the theodolite can hardly be turned on its axis. Oiling has returned it to its previous condition.
(7) The illumination of the wires is defective as in No. 59.

If such defects as these had occurred in an ordinary theodolite, none except the stiffness of No. 37, would have caused any trouble. They could have been remedied in an hour or two. The Wild factory is of course capable of putting them right, but without very clear instructions it is quite beyond the power of the triangulator to do so in the field. The vertical axis can easily be oiled in the field, once the method is known, but the other adjustments have caused difficulty even to the well equipped Mathematical Instrument Office in Calcutta.

The conclusion to be drawn from the above, is that if Wild Precision theodolites are to be relied on for work in outlying countries, the makers must supply a detailed book of instructions, and, if necessary, a set of special tools, by means of which a man of the type usually employed on primary triangulation can get at and dismantle any part of his theodolite. He must be told where to start and what to leave untouched, which screws are left-handed, which joints are pinned, and which are friction grips; where force may be used, and where he must be careful. It cannot be said that Wild theodolites can be trusted to maintain the state of perfect adjustment, in which their makers may issue them.

Turning to more favourable aspects, it is unnecessary to say anything of the Wild's convenience in use : anyone who has used a Wild is likely to be repelled by the sight of a 12 -inch theodolite of the old trpe. As regards accuracy, No. 37 has provided no data from which it can be judged, but No. 59 has given results which show that a Wild Precision theodolite in grood order is capable of good primary triangulation, and which give grounds for hopings that it will be able to equal or even to surpass the best 1 -inch theodolites.

In the Chittagong series the programme was to observe three measures face right, and three face left, on each of twelve zeros. By an oversight, the zeros selected were $0,30^{\circ}, 60^{\prime \prime}$ etc., so that the programme was equivalent to twelve measures on each of six zeros. Each intersection and reading of the arc was
repeated twice. Except in one quadrilateral which was affected by the stiffness of the axis, the average triangular error in 16 triangles was $0^{\prime \prime} \cdot 47$. For the whole series of 20 triangles this figure was $0^{\prime \prime} \cdot 59$, and the mean square error of an unadjusted angle was $0^{\prime \prime} \cdot 41$. This is not as good as the best 12 -inch theodolite work in which the mean square error may be $0^{\prime \prime} \cdot 3$ or even $0 \cdot 2$, but it may be noted that it was the observer's first season of observation, and that further experience of the Wild may lead to improvements in a programme of work which was designed for the 12 -inch theodolites.

The graduation of the horizontal circle of No. 59 appears to be excellent. All the measures made on different zeros have been classified according to the part of the circle on which they were measured, and the values of each zero mean minus the general mean value of the angle have been recorded. Table 1 gives the resulting mean value of Z.M. - G.M. for angles measured in different parts of the arc. Thus the figure +0.89 in the 13 th column of the first row, signifies that all the measures of all angles whose one arm was between 300° and 310° or 120° and 130°, and whose other arm was between 360° and 10° or 180° and 190°, averaged $0^{\circ} \cdot 89$ greater than the general mean of all the measures of the same angle made on all parts of the arc. The figure 5 in brackets signifies that the figure $0^{\prime \prime} \cdot 89$ is the mean for 5 different angles which were measured on this part of the arc. Means have also been taken out for each row and each column, thus the meaning of -0.22 at the foot of the first column is that all angles which were measured clockwise from between 0° and 10° or 180° and 190° tend to be $0^{\prime \prime} \cdot 22$ seconds too small. It is noticeable that the largest figures occur where there are least entries, and it is apparent that if observations are made on 12 zeros, graduation error should have a very small effect. This remark applies to systematic graduation error affecting all the graduations through several degrees. The complete table of Z. M. - G.M. (not printed) shows that individual graduations are also very good. Out of about 300 entries, 65 exceed $1^{\prime \prime}, 15$ exceed $2^{\prime \prime}$ and the largest is $3^{\prime \prime} \cdot 04$, and there is no reason to attribute even these wholly to graduation error.

On hearing of the defects of No. 37, Messrs Wild at once offered to replace it free of charge, and its replacement has been received. This theodolite (No. 130) appears to be in excellent order, and a good season's work is confidently expected.

It has not been possible to make extensive tests for astronomical wos, but a short azimuth programme with No. 130 has given very satisfactory results. Azimuths from Polaris out of elorigation on six different zeros gave results which differed from their mean by $-\varepsilon^{\prime \prime} \cdot 2,+0^{\prime \prime} \cdot 8,-2^{\prime \prime} \cdot 9,+2^{\prime \prime} \cdot 7,+0^{\prime \prime} \cdot 8$ and $+0^{\prime \prime} \cdot 5$ espectively, giving a probable error of the mean of $0^{\prime \prime} \cdot 6$. Each of these figures is the mean of a single reading on face left and face rigis, and the total observing time was 35 minutes, excluding time bservations
To face page 86．］
Values of ZM－GM，where ZM is the mean value of all measures of an angle taken on a certain part of the circle，and GM is the mean of all the measures on all parts of the circle．Figures in brackets indicate the number of different angles contributing to the means tabulated．

$\begin{array}{\|l} \hline \text { Ho } \\ \text { a } \\ \text { a } \\ \cline { 1 - 4 } \\ \hline \end{array}$	$\begin{aligned} & \text { 毋্ } \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \overrightarrow{+} \\ & \dot{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { 甲 } \\ & \dot{\circ} \\ & + \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & i \end{aligned}$	$\begin{aligned} & \underset{\leftrightarrow}{\circ} \\ & \dot{i} \end{aligned}$	$\begin{aligned} & \because \\ & \underset{+}{\circ} \end{aligned}$	$\begin{aligned} & \because \\ & \dot{0} \end{aligned}$	$\underset{i}{i}$	$\begin{aligned} & \text { qu } \\ & \stackrel{1}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\leftrightarrow}{\oplus} \\ & \dot{+} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{\circ} \\ & + \\ & + \end{aligned}$	$\stackrel{\bigcirc}{+}$	$\stackrel{\text { İ }}{\stackrel{1}{+}}$	$\begin{aligned} & \text { ®i̊ } \\ & \stackrel{\circ}{+} \end{aligned}$	－	$\stackrel{9}{0}$	® $\stackrel{\text { ¢ }}{+}$ +	＊＊	！
	：		$\begin{aligned} & \underset{7}{E} \\ & \stackrel{y}{i} \end{aligned}$		；	\vdots	$\begin{aligned} & \text { ভ্〒 } \\ & \stackrel{+}{+} \\ & \stackrel{+}{+} \end{aligned}$	！	：	$\stackrel{+}{+}$ + + + +	：	\vdots	：	\vdots	！	：	！	：	¢ ¢ + +
	$\begin{aligned} & \text { œ } \\ & \vdots \\ & \vdots \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \overline{\mathbf{0}} \\ & \text { O} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \hat{\otimes} \\ & \stackrel{\otimes}{\infty} \\ & \stackrel{+}{+} \end{aligned}$	$\stackrel{\text { © }}{\substack{0 \\ \stackrel{i}{0} \\ i}}$	$\begin{aligned} & \widehat{N} \\ & \stackrel{N}{0} \\ & \stackrel{0}{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { B } \\ & \stackrel{0}{\circ} \\ & \dot{i} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{i} \end{aligned}$		；	末 末 $\stackrel{+}{+}$ +	\vdots	：	\vdots	\vdots	：	\vdots	：	：	$\xrightarrow[+]{\stackrel{9}{0}}$
아울	$\begin{aligned} & \text { E } \\ & \mathbf{0} \\ & \dot{0} \\ & + \end{aligned}$	$\begin{aligned} & \text { O-0 } \\ & 0 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { ज } \\ & \dot{0} \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{5} \\ & \stackrel{1}{\dot{0}} \\ & i \end{aligned}$	$\stackrel{\text { fin }}{7}$ $\stackrel{y}{4}$ i	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \ddot{0} \\ & i \\ & i \\ & \hline \end{aligned}$	$\begin{aligned} & \text { oٍ } \\ & 0 \\ & \dot{0} \\ & + \end{aligned}$	；	：	：	！	：	；	\vdots	！	！		$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{0} \\ & i \end{aligned}$	$\stackrel{9}{9}$
	$\begin{aligned} & \text { © } \\ & \text { 0 } \\ & \stackrel{i}{1} \end{aligned}$	\vdots	！	$\begin{aligned} & \stackrel{\Theta}{\Theta} \\ & \underset{\sim}{\approx} \end{aligned}$	；	：	$\underset{\substack{\underset{i}{i} \\ i \\ i}}{\substack{i}}$	；	\vdots	：	：	；	：	\vdots	！	：	$\stackrel{\Xi}{\text { I }}$	$\begin{aligned} & \underset{\sim}{E} \\ & \stackrel{y}{\infty} \\ & + \end{aligned}$	7 $\stackrel{7}{8}$ +
	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\oplus}{\dot{+}} \\ & + \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{y y y}{*} \\ & \stackrel{1}{+} \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & \widehat{ভ} \\ & \underset{\sim}{0} \\ & \dot{1} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \\ & i \end{aligned}$	$\begin{aligned} & \widehat{0} \\ & \text { O} \\ & \text { i } \end{aligned}$	：		：	！	\vdots	！	\vdots	！	：	：			$\stackrel{\text { ¢ }}{+}$ + $\stackrel{+}{+}$ +	
	$\begin{aligned} & \text { 厄 } \\ & \stackrel{\circ}{\oplus} \\ & \stackrel{\circ}{\circ} \\ & + \end{aligned}$		$\begin{aligned} & \stackrel{\underset{\sim}{\overleftarrow{ }}}{1} \\ & \dot{\circ} \\ & + \end{aligned}$	$\begin{aligned} & \text { 會 } \\ & \stackrel{i}{i} \end{aligned}$	：	！	\vdots	：	；	\vdots	！	；	！	$\begin{aligned} & \text { = } \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{y}{+} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { O} \\ & \stackrel{0}{i} \\ & i \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { N } \\ & \text { O } \\ & + \end{aligned}$	$\begin{aligned} & \widehat{\cong} \\ & \vdots \\ & \vdots \\ & + \end{aligned}$		0 + + +
	$\begin{aligned} & \text { © } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{+}{+} \end{aligned}$	\vdots	：	$\begin{aligned} & \widehat{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{0} \\ & i \end{aligned}$	：	\vdots	！	：	！	：	\vdots	：	！	$\begin{aligned} & \underset{0}{3} \\ & \underset{i}{i} \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \underset{\sim}{*} \\ & \stackrel{1}{+} \\ & + \end{aligned}$	$\begin{aligned} & \widehat{\dddot{O}} \\ & \stackrel{y}{\bullet} \\ & \vdots \end{aligned}$	：	：	$\stackrel{\oplus}{+}$
	$\underset{\substack{\underset{\sim}{6} \\+\\ \hline}}{ }$	$\begin{aligned} & \underset{0}{E} \\ & \stackrel{1}{\circ} \\ & + \end{aligned}$	！	$\begin{aligned} & \stackrel{\rightharpoonup}{\diamond} \\ & \text {. } \\ & \dot{\circ} \\ & 1 \end{aligned}$	：	\vdots	：	\vdots	\vdots	\vdots	\vdots	：			$\begin{aligned} & \underset{\sim}{x} \\ & \stackrel{\rightharpoonup}{x} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$		$\begin{aligned} & \stackrel{\widehat{y}}{\stackrel{(}{c}} \\ & \stackrel{y}{c} \\ & + \end{aligned}$		$\stackrel{\text { ¢ }}{\substack{0 \\ 1}}$
	$\begin{aligned} & \stackrel{ }{\infty} \\ & \stackrel{\oplus}{\circ} \\ & i \end{aligned}$	\vdots	！	；	：	；	；	！	\vdots	：		$\begin{aligned} & \widehat{\underset{\sim}{\overleftarrow{W}}} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { B } \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \widehat{\widehat{8}} \\ & \underset{i}{0} \\ & i \end{aligned}$			$\begin{aligned} & \overline{3} \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\leftrightarrows} \\ & \stackrel{\text { ® }}{1} \end{aligned}$	¢00
	$\begin{aligned} & \bar{O} \\ & \stackrel{\circ}{=} \\ & + \end{aligned}$	；	：	：	；	：	：	；	\vdots	\vdots	$\begin{aligned} & \underset{\sim}{\vartheta} \\ & \underset{\sim}{i} \\ & + \end{aligned}$	$\underset{\substack{7 \\ \vdots \\ \vdots \\ 1}}{1}$		；	！	$\begin{aligned} & \hline \overline{\widehat{x}} \\ & \underset{x}{x} \\ & \underset{1}{1} \end{aligned}$	：	：	¢
	$\begin{aligned} & \widehat{0} \\ & 0 \\ & 0 \\ & + \end{aligned}$	：	\vdots	：	；	！	；	！	！	$\begin{aligned} & \hline \stackrel{9}{6} \\ & \stackrel{6}{6} \\ & \stackrel{+}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{(95}{7} \\ & \stackrel{3}{+} \\ & + \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \text { ®} \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{+} \\ & + \end{aligned}$	 0 0 + +	$\begin{aligned} & \overline{\mathrm{S}} \\ & \stackrel{\rightharpoonup}{6} \\ & \dot{+} \\ & + \end{aligned}$	$\underset{\substack{E \\ i \\ i \\ \hline}}{ }$	E． ¢ ¢	！	$\stackrel{\text { ソ }}{\stackrel{\text { P }}{+}}$
	\vdots	！	\vdots	！	；	\vdots	！	$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \underset{\oplus}{\circ} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\underset{\sim}{*}}{+} \\ & \stackrel{+}{+} \\ & + \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \stackrel{1}{\circ} \\ & + \end{aligned}$	$\begin{aligned} & \text { ఱ } \\ & \stackrel{\circ}{6} \\ & + \\ & + \end{aligned}$		$\begin{aligned} & 6 \\ & \hline 6 \\ & \stackrel{6}{6} \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{\hat{i}}{8} \\ & \stackrel{N}{6} \\ & + \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\underset{x}{x}} \\ & \dot{=} \end{aligned}$			：	$¢$ $¢$ + +
	\vdots	：	！	：	\vdots	！	\vdots	$\begin{aligned} & \text { E } \\ & \stackrel{4}{6} \\ & \dot{+} \\ & + \end{aligned}$	$\begin{aligned} & \widehat{\widehat{6}} \\ & \dot{0} \\ & + \\ & + \end{aligned}$		：	：	$\begin{aligned} & \overline{3} \\ & \stackrel{y}{5} \\ & \stackrel{y}{0} \end{aligned}$	；		$\begin{aligned} & \underset{\sim}{\underset{x}{x}} \\ & \underset{\sim}{0} \\ & i \end{aligned}$		：	\bigcirc + +
	\vdots	：	\vdots	；	：	\vdots	$\begin{aligned} & \text { er } \\ & \stackrel{y}{i} \\ & i \end{aligned}$	$\stackrel{\overparen{N}}{\underset{\sim}{7}}$		$\begin{aligned} & \widehat{\mathscr{6}} \\ & \stackrel{6}{6} \\ & \stackrel{6}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\widehat{N}}{\stackrel{\circ}{8}} \\ & \stackrel{+}{1} \end{aligned}$	$\begin{aligned} & \widehat{\widehat{y}} \\ & \stackrel{\rightharpoonup}{\dot{c}} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \Xi \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { ® } \\ & + \\ & + \end{aligned}$	！	$\begin{aligned} & \bar{Z} \\ & \text { § } \\ & 0 \end{aligned}$	！	：	$\stackrel{\square}{i}$
	！	\vdots	！	：	$\begin{aligned} & \stackrel{\underset{\sim}{\mid}}{\substack{0}} \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \underset{\vdots}{E} \\ & \vdots \\ & \vdots \\ & + \end{aligned}$	$\begin{aligned} & \text { E } \\ & \stackrel{2}{0} \\ & \dot{0} \end{aligned}$			$\begin{aligned} & \text { O} \\ & \stackrel{\ominus}{\prime} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \text { P } \\ & \text { 希 } \\ & \dot{0} \\ & i \end{aligned}$	$\begin{aligned} & \underset{\underset{x}{x}}{\substack{++}} \end{aligned}$	$\begin{aligned} & \widehat{\tilde{x}} \\ & \stackrel{\text { x}}{\dot{x}} \\ & + \end{aligned}$	\vdots	\vdots	\vdots	\vdots	：	$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{+}{ \pm}}$
	！	！	！	：		$\begin{aligned} & \text { I } \\ & \substack{1 \\ 0 \\ 0 \\ 1} \end{aligned}$	$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{6}}{~} \\ & \stackrel{-}{6} \\ & + \end{aligned}$	；	：	$\stackrel{\text { ÑN }}{\substack{\text { N}}}$	\vdots	！	$\begin{aligned} & \text { E } \\ & \text { i } \\ & i \end{aligned}$	！	：	；	\vdots	：	$\stackrel{\square}{¢}$
	\vdots	\vdots	！	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{\rightharpoonup}{i} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\Phi}{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{\mathrm{E}} \\ & \stackrel{\circ}{\circ} \\ & + \end{aligned}$		$\begin{aligned} & \text { 포 } \\ & \vdots \\ & \vdots \\ & + \end{aligned}$		$\begin{aligned} & \underset{\underset{\sim}{\ominus}}{\stackrel{1}{0}} \end{aligned}$	$\begin{aligned} & \underset{0}{E} \\ & \underset{0}{0} \\ & i \end{aligned}$	：	E i	：	：	\vdots	\vdots	：	\cdots
	\vdots	$\begin{aligned} & ⿳ 亠 丷 厂 犬 \\ & \text { O} \\ & \dot{i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{E} \\ & \stackrel{+}{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { E } \\ & \stackrel{E}{O} \\ & \stackrel{O}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{y}{*} \\ & \stackrel{1}{+} \\ & + \end{aligned}$	$\begin{aligned} & \text { Ô} \\ & \text { O} \\ & \stackrel{0}{0} \\ & 1 \end{aligned}$	莫 \dot{i} i	$\begin{aligned} & \underset{\sim}{\Xi} \\ & \stackrel{N}{n} \\ & \vdots \end{aligned}$		\vdots	：	：	\vdots	！	\vdots	\vdots	！	
		$\begin{aligned} & \text { Qio } \\ & \text { ¢o } \\ & \text { So } \end{aligned}$		$\begin{aligned} & \text { 웅 } \\ & \text { ion } \\ & \text { in } \end{aligned}$												部会			

and setting up the instrument. It seems probable that a very good geodetic azimuth can be observed in a single night.

In conclusion it is considered that the Precision Wild is capable of carrying out the best primary triangulation, but that something must be done to improve its reliability. Either there must be a great advance in the quality of the materials and in the factory testing (and it is not suggested that either is unduly faulty at present), or else it must be made possible for observers to dismantle their own instruments. It is admittedly bad for a Wild theodolite to be dismantled, but when a triangulator is distant many weeks march from a workshop, he cannot do any further damage to an instrument which will not work. During the present season the Survey of India are using Wilds, but are taking the precaution of carrying 12 -inch theodolites into the field, and keeping them within reach of the observers.

APPENDIX

Chittagong Series. Height Computations.

All the vertical angles of the Chittagong series not having been observed at the hours of minimum refraction, a certain amount of irregularity was necessary in the computations, in the form of rejections and corrections to observed values. The details of this work are here put on record, although they are of little general interest. The method used is not intended to form a precedent in geodeti: work, in which it is to be hoped that all angles will ber observer at times of minimum refraction.

Chart XVII shows the computed differences of leight from either and of each side. All afternoon observations on any oue day ha, ve been meaned together. Where any afternoon oliservations are available, observations made at other times have been omitted, except when they show less refraction than the aternom? observations, or are otherwise of interest. Observations mede at times other than between 13 and 15.30 hours are followed by the hour $:$: observation in brackets. The coefficient of erfaction emploed in the computations was taken as usual from Tatoie 5 Sue of the Auxiliary tables, which gives a value dependent on the heiplita of both the station of observation and of the poins riserved. Inspection of Chart XVII shows that in the east end of the series the height difference from the higher end of a ray is invariably greater than that determined from the lower end. Such discrepancies may
of course be caused by deviation of the vertical of the stations concerned, but they would also be caused by a very small inaccuracy in the coefficient of refraction taken from the tables, and the regularity with which the difference occurs indicates that this is the cause. This error is almost entirely cancelled by accepting the mean value as obtained from either end of the ray.

Cases occur (e.g. Yetagong-Mongklang) where a value of the height difference is available at one end of a ray only. Under these circumstances it is not right to accept this value of the height difference; it is better to allow for the error in the assumed coefficient of refraction by improvising a value for the other end of the ray, with which to mean the observed value. This value may be improvised as follows:-The effect of an error in the coefficient of refraction varies as the square of the length of the ray; hence observations from opposite ends of a ray should give a discrepancy of KM^{2}, where M is the length in miles, and K is a constant determined from the following table.

Ray	Discrepaucy (D)	L.ength (M)	$D / M^{2}=\mathrm{K}$
	feet	miles;	
Waibula to Wone-lone-taung	10	25	-016
Yetagrong to Wone-lone-taung	8	22	- 017
Yetagong to Zemuklang	9	22	-019
Zemuklang to Mongklang	12	18	-037
Zemuklang to Lungleng	40	35	-033
Mean value of $\mathrm{K}=\cdot 024$			

No rays involving Zovailangklang have been included in the above table, because observations there were very discortant.

Examination of Chart XVII shows that at some stations the data aie incomplete or discrepant as noted below.

Wribula--Tn Wonc-lone-taung. No afternoon whservations. Accept $1,0,2 \cdot 0$ to: allow for further fall.

Jetrganq.-To Zemuklang. No afternoon observations. Accept $1.566 \cdot 0$ to allow for fall.

To Moncrklanc. No observations. Accept 572.7-KM', i.e. $\therefore 390$.

Zorailunglilan!!-To Zemuklang. No afternoon : onservations. Accept $21-0 \cdot 0$ to allow for fall.

To Mongklang. No afternoon observations. Acerpt $798 \cdot 0$ to allow for fall. The discrepancy between the two ends of the ray is seen to be very large.

To Lungleng. No afternoon observations. Accept 2,676.0 to allow for fall.

To Blue Mountain. No afternoon observations, and the 11.30 hour value is seen to be only 2 feet lower than the 9 hour value, as compared with 25 feet in the ray to Lungleng, and about 17 feet in the ray from Blue Mountain to Zovailangklang. Further the ralue of 1,107 is only 2 feet greater than the value obtained from the opposite end of the ray.

Accepting the 9 hour value and guessing a fall to midday the value $1,105+25(1,130)$ is suggested. The 11.30 value suggests 1,110 for midday, and the standard discrepancy from the value obtained at Blue Mountain suggests $1,105+\mathrm{KM}^{2}$ i.e. 1,124. Accepting the mean of these three gives 1,121 , weakly determined.

Blue Mountain.-To Zemuklang. The value $1,326 \cdot 4$ was observed at 13.30, but is clearly not a minimum and is rejected, since other lower values are available.

Sairep.-To Blue Mountain. The value 1,988 at 12.30 indicates greater refraction than 1,979 at 10 hours, or than 1,982 at an unrecorded hour. Results obtained at this unrecorded hour for other rays, show that it was an early hour. Consequently the value 1,988 has to be rejected. The value $1,979 \cdot 7$ at 10 hours suggests about 1,977 at midday, which is also in good agreement with 1,981 and 1,978 obtained from Blue Mountain, it being noted that the value of K (see above) is considerably smaller in this part of the series.

Huiphui.-All observations were made in the afternoon but on two days the refraction of the rays to Barkal and Mullianphui is seen to have failed to have reached a minimum. Consequently for these two rays the values $1,587 \cdot 6$ and $2,056 \cdot 6$ are accepted.

In Chart XVII the values within brackets give the mean of the height diffrences determined from either end of the ray, as modified in the ahove notes. The computation of the actual heights of stations thm presents no difficulty. When the height of an unknown ation is determined from two rays only (as at Yetagong), the mo:in takin has been weighted somewhat in favour of the shorter ray. I?a.i.t determinations based on Zovailangklang have been given law meight.

Th. !inal elosing error in height at Sitapahar, Mora Tan and Kurla is: is feet, but this camot all be attributed to the ohitagong series. In the west there is a spirit-levelled eonnection neer Chittageng, hut in the east the mearest connection is nt Mandaray so
 tion comstituting the Chittagong and Mandalay Lomeitudinab series. The probable error of height after 280 miles of trianguiation is $1: 3 \mathrm{P} \sqrt{2 \cdot 80}$ feet, where P is a quantity determinod rom the closures of height round each triangle. (See Geodetic Report Vol. III,

1926-27, Chapter II). In modern primary series P has averaged about $1 \cdot 5$, so that in 280 miles the probable error should be about $3 \frac{1}{2}$ feet. The 8 feet actually found is not altogether discordant with this, but the lack of a full set of afternoon observations in the Chittagong series has probably been iesponsible for some considerable loss of accuracy.

Chapter VI

LEVELLING

by H. P. D. Morton

1. Organization.-Eleven detachments were formed and employed as follows :-5 on high precision levelling throughout the season, 1 on high precision levelling up to December 1928 and thereafter on tertiary levelling, 1 on secondary levelling throughout the season, 1 on secondary levelling up to January 1929 and thereafter on tertiary levelling and 3 on tertiary levelling throughout the season.

Secondary work was carried out for the East Indian Railway, and the Punjab and Burma Governments, and tertiary for the latter two Governments and Bombay in connection with the following engineering projects.
$\begin{array}{lcccccl}\text { Muzaffargarh Indus Canal Area } & \ldots & \ldots & \ldots & \text { Punjab. } \\ \text { Protective Works for the Sittang } \\ \text { tour survey of } & \text { Myanaung Plain } & \ldots & \ldots & \ldots & \text { Burma. } \\ \text { Lloyd Barrage } & \ldots & \ldots & \ldots & \ldots & \ldots & \text { Bombay. }\end{array}$
In order to give effect to the accepted policy that the Party slould not be encumbered with tertiary levelling which (in the same way as minor triangulation) should be done by Topo. Circles, the four detachments formed for this class of work for the Lloyd Barrage Project were transferred to No. 24 Party, Central Circle. As the Burma Circle was not prepared to take immediate charge of levelling work, the fifth detachment formed for the tertiary levelling of Myanaung Plain worked under the direction of No. 17 Party.

In future all levelling for Local Governments and Public bodies that do not require the accuracy of secondary levelling, will be done by the Topo. Circles concerned.
2. Summary of out-turn.-The total out-turn of levelling was as follows:-

[^18]3. Work of detachments.-No. 1 detachment under Mr. L. D. Joshi did the following high precision levelling with a total of 453 miles (494 gross) with 23 miles of relevelments $(100 \%)^{*}$
(a) Nasiräbäd-Bhopāl and Bhopāl-Bina both in the fore direction; these are parts of new net lines 110 and 109 respectively. The routes were (1) along the main road from Nusīrābād via Būndi, Kotah, Jhālrupàtan and Agar to Shujālpur, and thence along the railway to Bhopàl, and (2) partly along the road and partly along the railway from Bhopàl to Bina.

Six primary bench-marks for the study of seismic changes were made in the neighbourhood of Satur Chhatri, Deoli-Bündi road, Basni, Khera and Rājosi where geological faults are known to exist.
(b) Mussoorie via Bhadrāj to Kālsī in the back direction. This is part of the Himālayan circuit Dehra Dūn-Rājpur-Mussoorie-Bhadrāj-Kālsī-Dehra Dūn. Details of this work are given in para 6.
No. 2 detachment under Mr. J. N. Kohli did the following high precision levelling with a total of 408 miles (481 gross) with 19 miles of relevelments (30%).
(a) Mārwār Pāli-Baroda in the fore direction. This comprises parts of the new net lines 103 and 112. The route followed the railway to Mehsāna, thence by road to Viramgàm and again along the railway to Baroda via Ahmadābād.
(b) Kälsī-Chakràtā in the fore direction along the motor road, and Chakrātā-Mussoorie via Lakhwār in the fore direction along the bridle-path. Details of this work are given in para 6.
No. 3 detachment under Mr. B. P. Rundev did the following high precision levelling with a total of 368 miles (484 gross) with 68 miles of relevelments (18%).
(\boldsymbol{a}) Ghakkar-Amritsar via Lahore in the back direction, along the Grand Trunk Road. This comprises farts of the new net lines J36 and 137.
(b) Ludhiāna-Sahāranpur via Ambala in the back direction, along the Crrand Trunk Road to Ambāla and thence to Sahäranpur along the main road. This comprises parts of the new net lines 1:37 and 139.
(r) Meprut-Muttra via Delhi in the back direction, along the main road. This comprises parts of the new net lines $1: 3$ and 106 .
Fo. f detachment undur Mr. Abdul Majid with Mr. I. D. Suri as second leveller was amployed on secondary levelling for th. East Indian Railway, along the railway from Cawnpore to Allalabad, and

[^19]from Mughal Sarai via the Oudh and Rohilkhand Railway (main-line section) to Najībābād, with a total of 609 miles (641 gross).

No. 5 detachment under Mr. Faizul Hasan with Babu Samiullah Khan as second leveller was employed on the following levelling:-
(a) Secondary levelling from Rohilānwàli to Leiah via Alipur, Ghāzīghāt and Mahmūd Kot for the Muzaffargarh Indus Canal Project. The route was cross-country from Rohilānwāli to Mahmūd Kot, and thence by road to Leiah. Total mileage 225 (239 gross).
(b) Secondary levelling along the Zwebut and Pagaing Bunds, and along a cross-country route from Aingdon to Thongwa in connection with certain Protective Works for the Burma Government. Total mileage 96 (123 gross).
(c) Tertiary levelling for the Burma Government for a contour survey of the Myanaung Plain. 5 primary and 434 secondary bench-marks were connected, and 10,325 groundheights were provided for the contour survey. Total double levelling 241 miles (247 gross), and single levelling 1,350 miles.
No. 6 detachment under Mr. Abdul Karim did revision levelling of high precision in Sind from Daur to Bāndhi and Bāndhi to Hyderàbäd via Daur along the railway line. Total mileage 100 (112 gross), with 5.5 miles of relevelments (55%).

On completion of the work this detachment was transferred to No. 24 Party, Central Circle, for employment on tertiary levelling in connection with the Lloyd Barrage Project.

Nos. 7, 8 and 9 detachments were formed for tertiary levelling, and were employed throughout the field season under No. 24 Party. During 1927-28, levelling for the Lloyd Barrage scheme was carried out by No. 17 Party by the methods of secondary levelling, in which one leveller follows another over the same pegs, the second leveller keeping one or two stations behind the first leveller, each using separate pairs of staves. A close network of secondary levelling was alreally in existence in the area under surver, and as it provided frequent reliable checks for the present levelling, it was considered that if modern Zeiss levels and G.T. staves were used, the desired degres of accuracy could be obtained by the method of tertiary double levelling, ${ }^{\prime}$, which two levellers work side by side using the same pair of stames, and check each otheres values on the spot: moneover, thes would resolt in a considerable saving in estah lishment. equipmornt
 work with the approval of the Chief Engincer in chatere of the leoject.

Vo. 10 detachment under Mr. N. R. Mazumdar didt the following high precision levelling with a total of $10:$ miles (10.5 gross) with 8 milas of relevelments (5%).
(a) Dehra Dūn to Kālsī in both directions along the motor road.
(b) Kālsì to Mussoorie via Bhadrāj in the fore direction, partly along the foot-path and partly along the bridle-path.
(c) Kälsi to Chakrātà in the back direction along the motor road.
No. 11 detachment under Computer Mohammad Ibrahim did high precision levelling from Mussoorie to Chakrātā via Lakhwār in the back direction alongr the bridle-path, a total of 36 miles (37 gross) with 15 miles of relevelments ($42^{\circ} /$).
4. Subsidence at Ambala.-As mentioned in last year's report the fore levelling between Sahāranpur and Ambāla showed an apparent rise of level of one or two inches between these two places, and a sinking of similar amount at Ambāla. During the season under report the back levelling from Ludhiāna to Sahàranpur has confirmed this, and check lines run from Ambāla for 17 miles towards Kāllka and for 46 miles towards Delhi confirm the sinkage at Ambäla. This is not a settlement of a few isolated bench-marks, but a general (although unequal) sinkage of many bench-marks through several miles of line. It must be considered proved that the country round Ambāla has sunk one or two inches since 1910-15, in continuation of the sinkage of 7 inches revealed by the comparison between the 1860-62 and 1912-14 levelling. The apparent rise between Sahäranpur and Ambāla is more likely to be due to subsidence of both these places, than to an actual rise of the intermediate country, although the latter is a possibility. The discrepancies between the old and new levelling are exhibited in Chart XIX.

Reference has been made to the Director of the Geological Survey, who has expressed the opinion that the sinkage is more likely to be due to dewatering by wells, than to general earth movements. Confirmation of this opinion may be obtained by the relative sinkage of bridges and wells between 20 and 35 miles from Ambäla along the road to Ludhiana. In this section bridge and well bench-marks alternate for several miles, and the wells have generally sunk about half an inch relative to the bridges since 1912-13. This relation cannot be traced elsewhere, but it does indicate that the drawing off of water may under some circumstances cause subsidence ; as is, indeed, obvious.
5. Sukkur-Hyderabad.-For some years discrejancies in the line from Sukkur to Hyderabiad have been a source of doubt. It was oriminally levelled in 1905, and the value then obtaimed has since been checked by circuits through Kotri and Jacobabind on the one hand, and Barmer and Khanpur on the other, in 1!si-25. (See Chart XX). But when the line was relevelled in $190.1-2 \%$, the fore leveller disagreed with the old levelling by about 2 fint, and the back leveller by about one foot, in the smense that Hyderibirl appeared to have sunk.

Chart XIX

SUBSIDENCE AT AMBĀLA

Height by 1927-29 levelling minus old levelling
(1) Ambăla to Sahāranpur 1912-13
(2) Ambāla to Ludhiāna 1912-13
(3) Ambäla to Delhi 1915-16
(4) Ambāla to Kālka 1910-11

A few relevelments were made in 1926-27, which were rather non-committal, giving results in general agreement with the 1924-25 back leveller. The line was relevelled in 1927-28. The northern half was levelled in the fore direction, and agreed reasonably well with the 1924-25 fore and back levellers, who had not disagreed badly with the 1905 work in this section. This section (SukkurBändhi) may consequently be considered to be satisfactorily completed. The southern half was levelled in the back direction : the result differed from both the 1924-25 levellers, and agreed with the 1905 levelling. In sections of considerable length this old value is further supported by secondary levelling circuits of 1921-22 which were connected with the main line. To complete this half of the work, fore levelling was undertaken in 1927-28, with the expectation that it would confirm the 1905 value: but it has not: it closely agrees with the 1924-2.5 back leveller.

The relative heights of Sukkur and Hyderābād remain in doubt by one, or even two, feet. No plausible series of earth movements will account for the discrepancies. It is thought that the trouble is probably caused by the instability of the pegs on which the staves are supported, although it is hard to understand why some levellers should have been able to get perfectly accordant results, while others have differed so widely.

It may be noted that with the exception of the levellers marked 7 and 8 in Chart XX, levelling work from south to north has resulted in a lesser difference of height between Sukkur and Hyderabad, than has been derived from levelling carried from north to south. This is especially noticeable in the case of the 1926-27 relevelments, when the effect is separately shown in each of the four sections relevelled. See lines 9 and 10 in Chart XX.

Hyderibad is about 200 miles south of Sukkur, and about 100 fert briow it. The levelling follows the railway joining the two places. Tlie country is a flat alluvial plain, liable to a certain amount of floo ling.

It is mot proposed to undertake further relevelments, as it is evident that accurate results cannot be obtained. It is recommended that thar linue should be excluded from the level net, although final decision on this point can be postponed until the adjustment of the net is undertaken.
6. Hill Circuits.-Levelling in hilly comitry presents varinos difficulties which may be expected to lead to some loss of accuracy. The existence of levelling lines from Dehra (o) Mussoorio and from Dehra to Kalsī (see Chapter VII, Chart XXIV), and the inclusion of a line from Kālsí to Chakrata in the season's programme, provided an opportunity for closing two hill circuits without great additional labour. Accordingly, levelling was run from Chakrāta to Mussoorie diroct, and from Kālsi to Mussoorie via Bhadrēj.

Additional interest was lent to these circuits by the long standing discrepancy (of about $1 \frac{1}{2}$ feet) between the height of Mussoorie as obtained by spirit-levelling and by triangulation.

Of the two circuits so formed, the circuit Kälsi-Chakratà. Mussoorie-Bhadrāj-Kālsī has closed well, the error being 0.057 feetin 83 miles. The circuit Dehra-Kālsī-Bhadräj-Mussoorie-Rājpur-Dehra has closed badly with an error of $0 \cdot 658$ feet in 66 miles. In this circuit the section Kālsi-Mussoorie is checked by the closure of the other circuit. The section Mussoorie-Rājpur-Dehra is checked by the agreement between the 1905-06 and 1926-27 values, (see Table 5 , at end of this chapter), although the 1903-04 values disagree br $0 \cdot 3$ or 0.4 of a foot in the direction required to close the circuit. But in 1905 there was a great earthquake, which levelling for Saha. ranpur to Dehra showed to have raised Dehra by about this amount. Doubt is also thrown on the accuracy of this section by the Training School 1926 results which showed an increase of two feet in the upper Q,700 feet of this section, although levelling carried out by officers under instruction is always apt to contain mistakes. It may be noted that the value obtained via Kajlsi lessens the disagreement between spirit-levelling and triangulation (see Chapter VII para 9!

The section Dehra-Kalsī disagrees by about 1 foot with the 190:-06 value obtained by officers under iustruction (simultaneons double levelling). This section was accordingly suspected of error. but the discordant sections have since been relevelled by officers now under instruction in the Training School, and the 1929 values are upheld. There are thus four independent 1929 values against the one 190. valut, and this section (which is flat and easy) camot be mistrusted.

It is considered that the error lies in the hill sections, possibly mily between Rājpur and Mussoorie, but probably in both sections, t^{2} er chosure of Kälsi-Chakrātá-Mussoorie-Kālsi being accidental.

The following may be considered to be possible sources of error iat hill levẹling:--
(1) The large number of stations required. But it is memeally considered that short shots make for accurate work: one chain shots are probably better than 5 chain shots.
(2) Systematic refraction error. This has been discussed in Professmal Papre 2. and found almost nembinite.
(:3) Diseomfont in ohserving on rough geronal and weariness of thu wherver. This may perhaps preveni tla very best work heing whatuen, but it should not cause amess of $0 \cdot 6$ of a fout in fie miles.
(1) The inaccuracy of using hypothetical wom of gravity for the dynamic and orthometric corrections. Shis is disenssed in chapter VII and found to be of little consereence.

(5) The length of the staff. This is very important in hill circuits : an error of 001 in a 10 -foot staff will cause an error of 0.5 feet in a 5,000 foot rise. The staves are frequently compared with standard tapes and each comparison is apparently accurate to less than 001 feet, but it is always possible that the end divisions, to which measures are made, may be slightly discordant with the rest of the staff (see Geodetic Report Vol. III, Chapter III, para 5). Further, the staff comparisons are generally made in the afternoon, and it cannot be said for certain that the staff has the same length while at work. On the contrary, some comparisons made at Dehra throughout the day (see para 7 of this chapter), indicate that there may be an appreciable change of length.

It is considered that the closing error is probably due to ignorance of the staves' length, and it is proposed to relevel the line from Rājpur to Mussoorie with invar staves as soon as possible.
7. Diurnal change of staff lengths.-From time to time the wooden levelling staves are compared with steel tapes, generally after work in the afternoon. The wooden staves are known to have a very small temperature coefficient, but, especially in hill circuits, it is essential to know that the length does not vary from any cause whatsoever. A few comparisons of two staves have been made throughout the day at Dehra Dūn, with the result that a persistent tendency to shorten between morning and afternoon is seen to be possible. See Chart XXI.

In the tests made this shortening averaged 00036 feet in 10 feet between $10 \mathrm{a} . \mathrm{m}$. and $4 \mathrm{p} . \mathrm{m}$. An error of this magnitude camnot cause an error of 0.6 feet in a rise of 5,000 feet as referred to in para 6 , but it is quite possible that the change may be several times greater in other staves and under other circumstances, and wooden staves cannot be considered to be reliable instruments for measuring great heights. The remedy lies in the use of invar staves, which it is hoped to introduce shortly.
8. Probable Errors.-Probable errors of high precision lines have been computed by the formula:-

$$
\sigma_{r}=\frac{\mathrm{S}}{\overline{3} \mathrm{~L}} ; \quad \eta_{r}=\sqrt{\left.\frac{\Sigma \Delta^{2}}{\square \mathrm{~L}}-\sigma_{r}{ }^{2} \times \frac{\Sigma r^{2}}{\mathrm{~L}}\right]}
$$

where $\sigma_{r}=$ probable systematic error.
$\eta_{r}=$ probable accidental error.
$\Delta=$ discordance of the results of the fore and back levelling between consecutive bench-marks.
$S=$ total discordance.
$r=$ distance between consecutive bench-marks.
$\mathbf{L}=$ total distance.

These are given below in foot and mile units:-

Line		Probable accidental error	Probable systematic error
106	Delhi-Mattra	± 0.00228	$\pm 0 \cdot 00038$
136	Ghakkar-Lahore	土 - 00268	$\pm .00018$
137	Ludhiaña-Ambāla	$\pm \cdot 00234$	$\pm \cdot \mathrm{C0100}$
137	Jahore-Amritsar	$\pm \quad .00263$	$\pm \cdot 00006$
139	A mbinla-Sabĩranpur	$\pm .00283$	$\pm .00043$
153	Delhi-Meerut	$\pm \quad .00258$	$\pm \cdot 00018$
101 A	Bñodhi. Hyderãtund	$\pm .00287$	$\pm .00159$
61	Debra-Kàlsi and Mnssoorie ...	$\pm \quad 00393$	$\pm \cdot 00056$
61 H	Kālsì Chakrātà and Mussoorie	士 -00403	$\pm \quad 00090$

Permissible probable accidental and systematic errors are $\pm \cdot 00416$, and $\pm \cdot 00106$ feet respectively.

Probable errors of secondary levelling were computed by the formula:-p.e. $= \pm \frac{1}{3} \sqrt{\bar{\Sigma} \bar{L}^{2}}$, where Δ is the discordance between two levellers, and L the total distance.

These are given below in foot and mile units:--

Detachment	Line	Probable error
No. 4 Dett.	Cawnpore-Allahãbād ...	$\pm 0 \cdot 00405$
'	Maghal Sarai-Najibubad	$\pm \cdot 00486$
No. 5 Vett	Pobilãnwãli-Leiah	$\pm \quad 00404$
,"	Bridge No. $74-\mathrm{M}$ yitkyo...	$\pm .01278$
,	l'annt-l'enwegon	$\pm \quad 00512$

9. Progress of the new level net.-The following additions were made to the completed mileage of the new level net:-

Line No.	Name of line	Miles completed on main line	Rematks.
136	Jhang-Lahore ...	57	Portion Jhang-Lāla Mĩsa-Ghakkar not yet completed.
137	Lahore-Ambāla	107	The whole line is complete.
139	Ambāla-Morādābād	58	Portion Sabāranpar-Morādābād not yet completed.
153	Delhi-Bareilly ...	45	The whole line is complete.
106	Jhang-Muttra ...	101	The whole line is complete.
61 D	Dehra-Kālsī-Mussoorie ...	48	1be whole line is complete.
61 H	Kālsī-Chakrātā-M ussoorie ...	64	
101 A	Sukkur-Hyderābād ...	100	The whole line is complete.
	Total Previously completed 'Sotal completed to date	$\begin{gathered} 580 \\ 6717^{*} \\ 7297 \end{gathered}$	

In addition to the above, 1,080 miles have been completed in one direction only, which is equivalent to 540 miles in both directions, making an equivalent total of 7,837 miles. The total mileage of the net is about 15,900 miles, about 2,600 miles having been added to the figure 13,300 published in Records Volume XV (1919-20), on account of the subsequent inclusion of the lines shown in the following table.

Line	From	To	$\stackrel{\text { \% }}{\stackrel{\circ}{\square}}$	Line	From	'To	+000
101 A	Sukkur	Hyderñbäd	195	Part of 61	Ferozepore	Ludhiäna	78
121 A	Midnapore	Kāniganj	$10 \overline{0}$	61 A	sahãratpur	Mnesoorie	(i4
150	Kotri	Barmer	210	61 J	Dehra Uūa	Mussornie via EA길	48
151	Rāniganj	Dinājpur	239	61 H	Kı̈lė	Musnoorie via Chakrātā	64
152	Rājkot	Porbandar	132	Part of 63	Somua	Agra	70
$\xrightarrow{153}$	Delhi	Bareilly	178	Part of $6: 3$	Agra	Gwalior	7
$\left\lvert\, \begin{gathered} \text { Part of } 15 \\ 26 \mathrm{~B} \end{gathered}\right.$	Bellary	Gooty	58	Partof 64	sitapur	Lucknow	- 0.
	Uiịāpur	Bägalkot	50	70 B	Aurangehan	Barakar $\operatorname{rin} \mathrm{Binch}$	256
Part of 29.1	Bägalknt	Raichior	121	701	Marm	Rânchi	8.6
54 A	Jacounbind	Qunetta	2.17	Part of 72	Bankipere	Bihta	21
Part of 5 ;	Lahore	Ferozepore	5.5	

* Disagrees with previon* year*s report on accont of inclnsion of lines Nos. 15 , $26 \mathrm{~B}, 29 \mathrm{~A}, 14 \mathrm{~A}, 56,61,61 \mathrm{~A}, 611,61 \mathrm{H}, 62,63,64,70 \mathrm{~B}, 70 \mathrm{C}, 72$.
$A \cdot B$:-'lhe new net is now considered to include pendent lines such as SahnanpurDehra, Kālka-Simlacte., but not short branch-linescommeting (3). Etatiods or special S. B. Ms.

TABLE 1.—Tabular statement of out-turn of work, season 1928-29.

Detachments and lines levelled	Months	Distance levelled			$\left\lvert\, \begin{gathered} \text { Total } \\ \text { number of feet } \end{gathered}\right.$		Meaunumber otstationsat whichthe ins-trumentswereset up	$\begin{gathered} \text { Number of } \\ \text { bench.marks } \\ \text { connected } \end{gathered}$		
				Total	Rises	Falls		Primary		
		Mls.	Mls.	Mls.	feet	feet		\%		
No. 1 Detachment.										
Part of line 110 Bhopāl-Nasīrābād (fore)	Oct. 28 to Mar. 29	344	36	380	6,752	7,996	5,288	7	22	325
Part of line 109 Bina-Bhopāl (fore)	$\left\lvert\, \begin{gathered} \text { Mar. } 29 \\ \text { to April } 29 \end{gathered}\right.$	89	2	91	934	1,495	1,152	.	1	114
$\begin{gathered} \text { Part of line } 61 \text { D } \\ \text { Kälsi-: } \\ \begin{array}{c} \text { Mussoorie } \\ \text { (back) } \end{array} \end{gathered}$	$\begin{gathered} \text { May } 29 \\ \text { to July } 29 \end{gathered}$	20	3	23	2.775	7,962	1,750	2	51	33
No. 2 Delachment.										
Line 103 Mārwã Yaili. Viramgãm (fore)	$\left\|\begin{array}{c} \text { Oct. } 28 \\ \text { to } \mathrm{Feb} .29 \end{array}\right\|$	237	75	296	5,276	3,490	. 3,584	2	11	368
Part of live 112 ViramgaimBaroda (fore)	$\begin{gathered} \text { Feb. } 29 \\ \text { to April } 29 \end{gathered}$	107	11.	118	- 933	787	1,364	...	10	133
Liue 61 H Kälsi-Chakrātā \& Mnssoorie (*) (fore)	April 29 to June 29	64	4	67	12,165	6,732	2,606	1	\cdots	109
No. 3 Detachment.										
Part of line 136 LahoreGhakkar (3) (back)	Oct. 28 to Ainv. 28	5\%	7 13	30	0 697	727	7966	...	5	115
Parts of line 137 AmritsarLahore (4) (back)	$\begin{gathered} \text { Nov. } 29 \\ \text { to Dec. } 28 \end{gathered}$	31	- 12	246	6 422	301	1606	...	2	66
AmbanlaLudhiaña (5) (back)	$\begin{aligned} & \text { Dec. } 28 \\ & \text { to Mar. } 29 \end{aligned}$	73	3	73	3345	373	3748	...	4	60
Part of line 139 SahãranparAmbāla (6) (back)	$\begin{gathered} \text { Jan. } 29 \\ \text { to Feb. } 29 \end{gathered}$		68.6	684	645	503	708		1	86

(1) Relevelled 23 miles.
(2) Relevelled 19 miles.
(3) Relcuelled 2 miles.
(1) do. 9 miles.
(5) do. 22 miles.
(6) do. 4 miles

TABLE 1.—Tabular statement of out-turn of work, season 1928-29.-(contd.).

TABLE 1.-Tabular statement of out-turn of work, season 1928-29.-(concld.).

Detachments and lines levelled	Months	Distance levelled			Total number of feet		Meanuumber ofatntionsat whichthe ing-trumentswereset up	$\begin{gathered} \text { Number of } \\ \text { hanch.marks } \\ \text { connected } \end{gathered}$			
				Total	Hises	Falls		Primary		免	
								4			
		mls.	Mls.		Mls .	feet		feet	\square_{4}^{40}		
No. 10 Detachment.											
Line 61 D Dehra to Kälsī \& Mussoorie (10) (fore \& part back)	Feb. 29, Mar. 29 \& May 29	76	\ldots	76	9,360	4,192	2,333	2	4	123	
Part of line 61 H Kālsī Chakrātā (11) (back)	April 29	29	\ldots	29	115	5,627	918	1	...	38	
No. 11 Detachment.											
Part of line 61 H Chakrātā- Massoorie (12) (back)	$\begin{gathered} \text { May } 29 \\ \text { to July } 29 \end{gathered}$	36	1	37	6,797	6,703	2,046	1	...	6	

(10) Relevelled 7 miles. (11) Relevelled 49 chains.
(12) do. 15 miles.

TABLE 2.—Check-levelling.

Discrepancies between the old and new heights of bench-marks.

Bench-marts of the original levelling that were connected for check-levelling			$\begin{aligned} & \text { Distance from starting } \\ & \text { bench-mark } \end{aligned}$	Observed height above (+) or below (-) starting bench-mark, as determined by			
No.	Hegree sheet	Description		Date of original levelling	Original levelling	$\begin{gathered} \text { Check- } \\ \text { levelling } \\ 1928.29 \end{gathered}$	
			miles		feet	feet	feet
At Ambāla on limes 61 F and $61 G$							
73	53 B	S. H. M. at Ambāle	$0 \cdot 00$	1912-14	$0 \cdot 000$	$0 \cdot 000$	0000
74		at laboratory	0.31	,	- 1.797	- 1.692	+0.105
77	\cdots	on IVy. platform	1.53	,	- 4.4 .43	- $4 \cdot 428$	+0.065
79	.,	on Ry. platform	1.67		- $5 \cdot 358$	- 5•327	+0.031
34	"	on Ry. bridge	$3 \cdot 32$	1910.11	- $5 \cdot 553$	- 5.590	-0.037
35	,	on Ry. bridge	$4 \cdot 78$.,	- $2 \cdot 114$	- $2 \cdot 183$	-0.069
38	,	on Ry. bridge ...	10.58	,	$+0.076$	+ 0.167	+0.091
34	..	on Ry. bridge ...	$12 \cdot 63$,	+ 8.042	+ $8 \cdot 1150$	+0.118
41	..	on Ky platform ...	$13 \cdot 30$,	+19.947	+20.049	$+0 \cdot 102$
40	\cdots	Embedded at Lālru R.S.	$13 \cdot 33$,	+14.012	+14.123	+0.111
42	"	on bridge	15.59	,	+30.828	$+30 \cdot 923$	+0.095
43	.	on bridge	$17 \cdot 34$		+52.401	+52.479	+0.078
83	"	on stone flouring	$1 \cdot 27$	1912-14	+ 8.264	+ 8.217	-0.047
79 89	..	on Ry. platform	1.67		- $5 \cdot 358$	- $5 \cdot 3 \div 7$	+0.0:1
89 40	"	un bridge	1.86	1915.16	- 1.216	- 1.228	-0.012
40 91	,	on bridge	$3 \cdot 00$..	- 1.891	- 2.0101	-0.110
91	,	on well	$4 \cdot 14$	"	- 10.161	$-10 \cdot 140$	+0.021
92	,	Interred between M.S 116 and 117	$5 \cdot 13$	"	-23.943	-23.872	+0.071
93	\cdots	on colvert	$6 \cdot 81$,	- 19.674	-19.502	+0.072
94 95 98	''	on bridge	8.11	\cdots	-14 538	- 14.470	+0.068
95 96	,.	on well	9-29	"	-32.375	-32-291	+ 11.084
96 97 97	..	on bridge	$10 \cdot 26$,	- $14 \cdot 9: 2$	$-1+832$	$+17.0911$
97 98 98	.	Interred at M.S. 110	$11 \cdot 75$.	-38.154	-38 161	-0.007
98 99	.	on bridge	12.86	,	$-13 \cdot 686$	$-13 \cdot 60+$	+0.082
199819	$\stackrel{\square}{*}$	on bridge	$13 \cdot 09$ 15.61	"	-13.421	-13.341	+0.0811
$10: 3$	"	on bridge	14.34	'	- 37.813	$-37 \cdot 746$ -48.316	+0.067 +0.071
1114		on bridge	$20 \cdot 80$,	-50.556	- $50 \cdot 488$	+0.071 +0.068 +0.082
105	,	Interred at M.S. 100	$\bigcirc 1.86$	",	$-58 \cdot 80$	-58.345	+0.075
107		on bridge	$25 \cdot 09$		- 54.531	- 54.46	$+0.061$
4	53 C	on bridge	26.41	"	-53.674	-63.400	- 0.074
4 6		on bridge	28.59	"	- 54.150	-53 983	+0.157
6 7	"	on bridge	30.43		- $52 \cdot 781$	$-52 \cdot 723$	$+0.056$
10	".	Interred at M.S. 90	31-86	"	-66.121	-66.132	-0.011
11	\cdots	on bridge	35.35	,	-67.540	-67.433	$+0.067$
16	','	on stone at M S 80	$36 \cdot 25$	"	-70.117	-70 04,	+0.071
17	",	Interred at M.S. 80 on bridge	$41 \cdot 98$	"	-82.752	-82.666	$+0.086$
18	".	on bridge	$\begin{aligned} & 44 \cdot 15 \\ & 45 \cdot 90 \end{aligned}$		$-61 \cdot 928$ $-81 \cdot 164$	$-61 \cdot 830$ $-81 \cdot 064$	+0.098 +0.100

(Confinued).

TABLE 2.-Check-levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

TABLE 2.—Check-levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

[^20]TABLE 2.-Check-levelling-(concld.).
Discrepancies between the old and new heights of bench-marks.

[^21]
TABLE 3.-Revision levelling.

Discrepancies between the old and new heights of bench-marks.

(Continued)

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were counected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
			miles		feet	feet	feet
(Ludhiana to Ambäla) old line 61, new 157-(contd.).							
13	44 N	on stone	$0 \cdot 32$	1913-14	$+3.926$	+ 3.954	+0.028
11	,	on stone	$0 \cdot 68$	",	+ 1.628	+ 1.637	$+0.009$
10	,	on platform	0.95	",	+ 3.162	+ 3.183	+0.0.21
75	"	on platform	1-34	",	+ 1.393	+ 1395	$+0.002$
76	"	on platform	$1 \cdot 50$,	- $2 \cdot 489$	- $2 \cdot 478$	+0.011
7	,"	on bridge	$4 \cdot 10$,	+ 15.432	+ 15.430	-0.002
6	,	on bridge	6.20	,	+ 26.324	$+26.331$	$+0.007$
35 87	"	on culvert	9.68	,	+ 33.650	+ 33.592	-0.058
87		on bridge	$10 \cdot 71$	"	+ 35.536	+ 35.489	-0.047
110	53 B	Stone B. M. at Dorña	$14 \cdot 39$ 14.46	,	+36.189 $+\quad 52.309$	+36.177 +52.314	-0.012 +0.005
	",	on bridge	$14 \cdot 46$ 16.85	"	+56139 $+\quad 52 \cdot 309$ $+\quad 565$	$+52 \cdot 314$ $+45 \cdot 132$ +	+0.005 -0.065
113	"',	on Kado T. S.	17.52	",	+56.1578 +	+ $+56 \cdot 490$	-0.088
123	"	on bridge	$24 \cdot 19$	"	+ 59.625	+ 59.572	-0.053
132	\cdots	on bridge	33.05	",	+ 66.563	+ 66.434	-0.129
133	"	on catch-water well	34.42	"	+ 60.514	+ 60.401	-0.113
134	"	on bridge	35.59	"	+ 67.629	$+67 \cdot 518$	-0.111
135	"	on Kümra T.s.	$37 \cdot 92$		+ 666.699	+ 66.560	-0.139
136	,	on well	$36 \cdot 86$		+ 61.525	+ 61.416	-0.109
137	"	on bridge	$37 \cdot 55$	"	+ $73 \cdot 323$	+ 73.218	-0.105
138	,	on well	$38 \cdot 55$,.	+ 66.083	+ 65.913	-0.170
139	,	on bridge	$39 \cdot 61$	",	+ 61.550	$+61.419$	-0.131
140	,	on well	$40 \cdot 32$	",	+ 64.537	+ 64.347	-0.190
142	,	on bridge	$43 \cdot 41$	",	+ 65.042	+ 64.913	-0.199 -0.164
143 144 145	"	on well on bridge	44•34	",	$+63 \cdot 161$ +69.341 +	+63.947 +69.209 +6	-0.164 -0.138
144 145	"	on bridge on well		",	+63.341 +69.337 $+64 \cdot 20$	$+69 \cdot 209$ $+\quad 64.060$	$-0 \cdot 132$ -0.177 0.12
146	"	on bridge	47.88	",	+64.105 +67	+ +66.978	-0.127
147		on well	50.03		+ 69.137	+ 68.960	-0.177
148		on bridge	50.89		+ 76.913	+ $76 \cdot 606$	-0.307 -0.191
149	"	on bridge	54.06		+ 77.333	+ 77.142	-0.191 -0.203 -0.208
150	"	on bridge	53.16	\because	+ 68.714	+ 68.041	-0.203 -0.221
151	"	on culvert	54.42	,	+ 76.059	+ 75.838	-0.231 -0.236
153 154 154	"	on bridge	$55 \cdot 85$	"	+ 77.991	+ 77.756	-0.236 -10.23 0
15	"	on calvert on well	$57 \cdot 29$ 59.31	"	- 74.880	$+\begin{array}{l}74 \cdot 637 \\ +83 \cdot 741\end{array}$	-0.244
1.5 19	"	Stone B. M, at Moglal Saräi	59.31 61.03	",	+ 81.180 +85.758 +80.180	+88.41 +80.406	-0.352
158	,	on well	63.36	",	$+80 \cdot 135$ + +	+ 69.866	-4.269
160	"	on bridge	$64 \cdot 70$		+ 75.570	+ 75.320	-0.200
161	"	on wel!	$66 \cdot 61$	"	+ 81.497	$\begin{array}{r}+81 \cdot 350 \\ +8988 \\ \hline\end{array}$	-0.14 -0.44
161 164	",	on culvert on bridge	$69 \cdot 00$ $69 \cdot 56$	"	9 $+\quad 90 \cdot 362$ $+100 \cdot 097$	$+\quad 89.888$ $+\quad 99.691$	-0.48 -0.396

(Continued)

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Hencl-marks of the original levelling that were connected during the revisionary operations				Difference between urthometric Leights, above (+) or below (-) the starting bench-mark			
No.	$\begin{gathered} \text { Degree } \\ \text { sheet } \end{gathered}$	Description		Date of original levelling	$\underset{\text { prom }}{\substack{\text { Fublighed } \\ \text { heights }}}$	$\begin{gathered} \text { From } \\ \text { revigion } \\ \text { 1028.-2日 } \\ \text { (ungijust. } \\ \text { ed) } \end{gathered}$	
			miles		feet	feet	feet
(Ludhiāna to Ambāla) old line 61, new 137-(concld.).							
35	53 B	on bridge	69.71	$1913 \cdot 14$	+ 93.047 \|	+ 92.683	-0.358
34		on bridge	$71 \cdot 16$		+ $89 \cdot 608+$	+ 89.282	-0.326
165	.,	on culvert	72.05	"	+ $89 \cdot 689+$	$+89.501$	$-0 \cdot 188$
71 (20)	"	on stone step	72.98	"	+ 93.335	+93.013	-0.322
i3 (22)	.,	S. B. M. at Ambāla .	73.08		+ $95 \cdot 161+$	$+94.845$	-0.316
(Ambäla to Sahäranpur) old line 61, new 139.							
73 (22)	33 B	S. B. M. at Ambäla ...	$0 \cdot 00$	1912.13.14	0.000	0.000	$0 \cdot 000$
80 (29)	"	on cement flooriug ...	0.86	"	$+2.873+$	+ 1.971	+0.093
81 (30)	.,	on stone	1.04	"	+ 3.143 ${ }^{+}$	+ 3.168	+0.025
82 (31)	"	on stone ...	1.08	"	$+2.277{ }^{+}$	+ $2 \cdot 360$	+0.083
71 (20)	."	on stone step ...	$0 \cdot 10$	"	- 1.826	- 1.833	-0.007
72 (21)	"	on memorial plintt...	$0 \cdot 17$	"	- 1.323	- 1.297	+0.026
76 (25)	"	on monument stone ...	1.03	"	- 5.870	- 4.827	+1.043
75 (24)	"	on stone step ...	1.08	"	- 5.444	- 5.410	+0.034
85	\square	ou masonry platform	1.67	,	- 8.619	- 8.566	+ 0.053
	59	on bridge	$5 \cdot 23$ 14.93	,	+ 3.263+	+ 3.392	+0.129
100 (53)	53 F	Interred at Mulana...	14.93	-	+ $14.404+$	+ 14.527	$+0.123$
102	"	on well	$17 \cdot 10$	"	+ 17.753	+ 17.887	+0.134
$\begin{aligned} & 103 \\ & 105 \end{aligned}$	"	on well	18.38	"	+ 17.324 +	+ 17.286	-0.038
105	.,	on bridge $\quad .$.	22.85	,	+ $18.926+$	+ $19 \cdot 037$	+0.111
107	"	Interred at Cbappar	23.49	"	+ $20.452+$	+ 20.475	+0.083
108	"	on bridge $\quad .$.	23.79	,	+ 19.438 +	+ $19 \cdot 580$	+0.122
109	",	on bridge $\begin{aligned} & \text { on bridge }\end{aligned}$	$24 \cdot 67$ 25.45	"	+ $17 \cdot 214+$	+ 17.359	+0.145
111	",	on bridge on bridge	$25 \cdot 45$ $26 \cdot 85$	"'	$+17 \cdot 215+$ $+22 \cdot 31+$ $+17 \cdot 171+$	$+22 \cdot 485$ +17.344	+0.134 +0.173
112	"	on bridge \quad...	27-85		+ $16.578+$	+ $16.74{ }^{\text {+ }}$	$+0 \cdot 166$
113		on bridge	$28 \cdot 87$		+ $15 \cdot 206+$	$+15 \cdot 352$	+0.146
114	-	on bridge ...	$31 \cdot 22$	"	+ $22 \cdot 174$ +	+ 22.356	$+0 \cdot 182$

(Continued).

TABLE 8.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Beuch-murks of the original levelling that were connected during the revisionury operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
			miles		feet	feet	feet
(Ambīla to Sahäranpur) old line 61, new 139-(contd.).							
3	53 F	Stone B. M. at Jagãdh	31.73	1912-13-14	+ 20.664	+ 20.866	+0.208
115	"	Interred at Jagaidhri ...	31.79	"	+ 21.969	$+22 \cdot 153$	+0.184
117	,	on well	32.26		+ $20 \cdot 630$	+ 20.834	+0.204
123	,	on well	$33 \cdot 61$	",	+ $27.074!$	+ 27.286	$6+0.218$
123	,	Stone B. M. at Amadalpar	37-32	"	+ 3.269	+ 3.489	+0.220
(3)		Interred at Amadalpur	$37 \cdot 37$				+0.198
5	",	Stone B M. at Sargâwa	$46 \cdot 23$		- $6 \cdot 407$	- 6.264	$+0.148$
127		on well	$47 \cdot 74$		- 7.5*5	- $7 \cdot 434$	$+0.091$
74	53 G	on bridge	$52 \cdot 17$		+ 9.739	+ 9.802	$+0.063$
75	"	on bridge	$52 \cdot 95$		+ $10 \cdot 365$	+ $10 \cdot 416$	+0.051
1	"	Stone B. M. at Megh Chapar Falls	53.63		+ 4.385	$+\quad 4 \cdot 443$	
76	.,	on bridge	$53 \cdot 82$		+ 5.026	+ 5.097	$+0.071$
77	"	on bridge	54.52		+ $7 \cdot 633$	+ 7.701	$+0.068$
98	"	in dàk bunga	55.89		- 0.988	- 0.919	$+0.069$
39	"	on platform	$56 \cdot 18$		- 5.056	- 5.044	$+0.012$
78	,	on well	$56 \cdot 20$		- 5.102	- 5.073	$+0.029$
42	,"	on step of church	$57 \cdot 15$		+ 0.019	$+0.081$	$+0.063$
41	"	S. B. M. at Sahāranpur	57-18		- 0.136	- 0.098	$+0.038$
(Delhi to Meerut) old line 62A, new 153.							
183	53 H	S. B. M. at Jelhi	$0 \cdot 00$	1912.13	$0 \cdot 000$	$0 \cdot 000$	0.000
309		on platform of mecuorial	$1 \cdot 68$		- $67 \cdot 805$	- 67.842	-0.037
80		on step of memorial ...	1.81		- $57 \cdot 176$	- 57.182	-0.008
81		on stone floring ...	$1 \cdot 8{ }^{\text {o }}$		- \%8.263	- 58.270	-0.008
79	.,	on pedestal of memorial	$2 \cdot 19$		- 60.839	- 60.855	-0.016
208	"	on bridge	$2 \cdot 61$		- $66 \cdot 574$	- 66.107	$+0.467$
307		on ledge of window	$2 \cdot 91$		- 69.976 -	- 69.998	-0.0.12
$\stackrel{205}{ }$		on Jumara bridge	$3 \cdot 44$		- 73.457	- 73.476	-0.019
205		on Jumna bridge ...	$3 \cdot 46$		- 71.816	- 71.878	-0.028 -0.052
306	\cdots	on pedestal of memorial	$3 \cdot 64$	'",	- $87 \cdot 187$	-87.239	-0.052 -0.013
303	"	ou bridge	$4 \cdot 17$		$\text { - } 81.413 \mid$	- 81.456	-0.018 -0.036
200	".	on well	$6 \cdot 14$		$\|-97 \cdot 115\|$	- 87.171	-0.0.6
198	.,	on well on stonc pillar	$7 \cdot 77$ 8.87		-89.753	- 89.830	-0.070 -0.101
197 19.9 1.9	\cdots	on stone pillar on well	8.87 9.03		$-87 \cdot 766$	87.867 -85	-0.108 -0.058
19.9 19.5 19.		on well on slone pillar	$9 \cdot 93$		$\|-8.5 \cdot 747\|$	- 8.7.833	-0.058 -0.112
193 193 198	$\because .$.	on slone pillar Interred at toll-bar honse	$10 \cdot 19$ $12 \cdot 33$		$-82 \cdot 828$	- 82.940	-0.112
191	",	Interred at toll-bar boase on stone flooring	$12 \cdot 33$ $12 \cdot 36$		- 88.756	- $90.80{ }^{\text {a }}$	-2.0070
191	"	on stone flooring	12-36		- 85.041 ${ }^{-1}$	$85 \cdot 11$	

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bencl-marks of the original levelling that were conlected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting beuch-mark			Difrerence (revision -origi- nul). The sign + denotes that the lieight was greater and the sign-, less in 1928.2e than when originally levelled
			miles		feet	fert	feet
(Delhi to Meerut) old line 62 A, new 153-(contd.).							
190	053 H	on bridge	$12 \cdot 88$	1912-13	- 84.125	- 84.196	-0.071
189		on bridge ...	$12 \cdot 99$		- 72.231	- 72.303	-0.072
188	8	on bridge	$13 \cdot 55$	",	- 79.860	- 79.933	-0.073
187	7	on culvert	13.89	",	- 75.398	- $75 \cdot 476$	-0.078
409	9	Interred at Ghäziabbād	$13 \cdot 96$	',',	- 70.887	- 70.996	$-0 \cdot 109$
410	10	Step of verandich	$13 \cdot 98$	",	- 66.627	- 66.704	-0 077
183	3	on bridge	14.49	",	- 67.810	- 67.883	-0.073
182	2	on bridge	$15 \cdot 42$	"	- 58.657	- 58.721	-0.064
181	-	on well	$15 \cdot 86$		- 57.456	- 57.533	-0.077
180		on culvert	$16 \cdot 78$	"	- 50.177	- 50.220	-0.043
178	-	on stone pillar	17.64	"	- 54.379	- 54.418	-0.039
176		on well	$17 \cdot 98$	",	- 57.522	- 57.560	-0.038
173		on bridge	19•74	"	- 50.396	- 50.424	-0.028
168	,	on culvert	22.49	,"	- 46.593	- 46.623	-0.030
166	.,	on culvert	$23 \cdot 14$,	- 46.828	- 46.829	-0.001
165	"	Interred at Muridnagar ...	$23 \cdot 23$,"	- $52 \cdot 672$	- $52 \cdot 678$	-0.106
164		on colvert,	23.63	"	- 50.348	- 50.354	-0.006
161	.	on lock	$25 \cdot 02$		- $36 \cdot 728$	- 36.748	-0.020
160	..	on culvert	$25 \cdot 29$,.	- 41.769	- 41.799	-0.030
159	.	on culvert	$26 \cdot 66$,"	- 37.120	- 37.141	-0.021
158	.	on culvert	$27 \cdot 48$,	- 37.869	- $37 \cdot 915$	-0.046
155	.	on bridge	$30 \cdot 40$,	- 39.580	- 39.632	-0.052
153	.	on culvert.	$31 \cdot 37$	"	- 38.204	- $38 \cdot 252$	-0.048
52	.,	on culvert.	$31 \cdot 75$	",	- 36.277	- $36 \cdot 31!$	-0.042
149		Interred at Muhinddinpur -	33.79	,	- $41 \cdot 947$	- 42.0011	-1.053
147	..	on well	$35 \cdot 43$	"	- $29 \cdot 99 \mathrm{ii}$	- $3^{10} 046$	-0.050
44	,	on well	37.75	"	- 31.752	- 32.071	-0. 319
42		on step	$39 \cdot 14$	"	- 25.294	- 26.3a3	-0.059
11	..	on stone pillar	39.25	"	- 30.218	- 30.257	-0.044
40	.	on stone pillar	$39 \cdot 47$,	- $31 \cdot 45 \%$	- 31.562	-0.105
33	.	on stone pi lar	40.42		- 26.246	- 26.373	-0.127
34	.	on stone pillar	$40 \cdot 47$		- 25.729	- 25.819	-0.090
35	"	on atone pillar	$40 \cdot 52$	",	- $25 \cdot 705$	- 25.815	-0.110
30	.	on drain	41.88	.	- 27.701	- 27.78 B	-0.085
29		on stone step	42.09	"	- 25.999	- 26.093	-0.092
28		on stone footins	$42 \cdot 15$		- $24 \cdot 152$	- $24 \cdot 267$	-0.105
29	53 G	on bridge	$43 \cdot 27$,	- 23.689	- 23.798	-0.109
72	,.	on mile pillar	$43 \cdot 70$		- 25.769	- 25.854	-0.090
28	.	on culvert	44.03		- 22.373	- $22 \cdot 509$	-0.1:36
26	..	on stone flomring	44.52		- 19.113	- 19.22C,	-0.113
27		S. B. M. nt Meernt	44.58		- 20.418	- 20.543	-0.130
26 84	$38 \mathrm{H}$	on lridge	$43 \cdot 93$.,	- 28.146	$-\quad 28.249$ $-\quad 9.877$	-0.103 -0.120
84	531	on stone flocring	44.10	,	- 29.75	- 99.877	-0.120

(Coninued).

TABLE 3.-Revision levelling-(coutd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marts of the original levelling that were connected during the revisionary operations				Difference betweeu orthometric heights, ubove (+) or below (-) the starting bench-mark			
			miles		$f e$	$f e$	feet
(Delhi to Meerut) old line 62 A, new 153-(concld.).							
125	53 H	on istone step	44.25	1912-13	- 30.204	- 30.321	
123		on stone flooring	44.28		- 29.217	- 29.330	-0.113
122		on stone flooring	44.34	",	- 27.610	- $27 \cdot 70$ -	-0.095
183	53 G	on stone flooring	44.58	.,	- 24.938	- 25.054	-0.116
120	53 H	on stone flooring	$44 \cdot 77$	",	- 25.386\|	- 25.492	-0.106
121		on stone flooring	44.83	,"	- 27.939 -	- 28-05.	-0.113
124		S.B.M. in P.W.D. office ...	45.03	",	- 27.088	- 27-219	-0.131
185	53 G	on bridge	$45 \cdot 94$	",	- 25.974	- 26.076	-0.102
187		on well	$46 \cdot 94$,"	- 20.542	- 20.641	-0.099
189	"	on stone pillar	48.02	,.	- 20.923 -	- 21.424	-0.501
190	,	on stone pillar.	$48 \cdot 08$,	- 21.315 -	- 21.030	$+0.280$
191	,	on calvert	$48 \cdot 14$,"	- 18.985 -	- 19.089	-0.104
194	,	on culvert	$49 \cdot 73$		- 21.376	- 21.472	-0.096
195		on bridge	$50 \cdot 27$		- 16.667	- 16.760	-0.093
196	'	on Saini T.S.	50.59		+ $19 \cdot 467$ +	+ 19.384	-0.083
(Delhi to Muttra) old line 62 B, new 106.							
83	$53 I I$	S. B.M. at Delhi	0.00	1912-13	0.000	0.000	0.000
84	,.	on Pirgbaib T.S.	0.94	"	+ $29.992+$	+ 29.997	$+0.005$
85		on King Asoka's pillar	1.20	",	+ $33.437+$	+ 33.442	$+0.005$
86	"	on memorinl	1.40	",	$+34.941+$	+ 34.948	$+0.007$
87	"	on memorial	1.42	",	+ 34.222 +	+ 34.226	$+0.004$
269	,	on rock in sitn	1.72		- 27-269	- 27.272	-0.003
$\underline{962}$:,	on Lal Cbabūtra	8.71	",	- 62.639	- $62 \cdot 651$	-0.012
263	.	on pião	9.97	"	- 82.094	- $82 \cdot 119$	-0.025
264	,	on temple	$10 \cdot 37$	"	- 80.370	- 80.385	-0.015 +0.016
265	,	on stone pillnr	$10 \cdot 98$	",	- 63.599	- 63.583	+0.016 +0.014
${ }_{2}^{266}$	-	on stone Hooring	$11 \cdot 15$	"	- 61.34, ${ }^{\text {a }}$	- 61.335	+0.014 +0.014
267 68	-	$\left\lvert\, \begin{aligned} & \text { un stone coping of gate } \\ & \text { ou stone flooring } \\ & \text { on }\end{aligned}\right.$	$11 \cdot 17$ 12.46	"	- $61 \cdot 317$ -	- 61.303	+0.006
69		on stone florring	$12 \cdot 46$ $12 \cdot 65$	",	- 64.1302	- 62.784	$+0.018$
70		on stone step	12.74		- 60.420 -	- $60 \cdot 403$	+0.017
71	"	on martle plinth	12.82	",	- 63.010	- $62 \cdot 99{ }^{3}$	+0.018
75	..	on marble step	$13 \cdot 86$	",'	$-\quad 48 \cdot 634$	- $48 \cdot 621$	+0.013 +0.005
76		on marble step	$13 \cdot 90$	",	-50.668	- 50.6811	+0.005 -0.014
67 79	..	on stone step on pedestal of memoria	14.82 15.16	""	- 51.699 -	-51.71	-0.014
79 261	- ${ }^{\text {- }}$	on pedestal of memorial at pião	$15 \cdot 16$ 9.21 10.72	",	- $60 \cdot 8391$	- 60.841	-0.002
259	.	on bridge	10.72		-77.418	- 77.440	-0.022

TABLE 3.-Revision levelliny-(coutd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			Difference (revision -origi- onl). The sign + denntes that the height was greater and the sign-, less in 1028-29 thnn when originally levelled
			miles		feet	feet	feet
(Delhi to Muttra) old line 62 B. new 106-(contd.).							
$\begin{array}{\|c\|c\|c\|c\|c\|} & 256 & 53 \mathrm{H} \mid \text { on wall } & \ldots & 11 \cdot 64\|1912-13\|-74 \cdot 724\|-71 \cdot 777\|-0.053 \end{array}$							
255	"	on reservoir	$12 \cdot 60$		- 62.536	- 62.598	-0.062
254	,	on rock in situ	13.88		- 52.984	- 53.038	-0.054
252	.,	on rock in situ	16.43		- 61.969	- 62.059	-0.090
$\because 51$	"	Interred at mile 78	16.62	,	- 70.499	- 70.600	$-0 \cdot 101$
250	"	on flooring	$17 \cdot 71$	"	- 63.246	- 63.341	-0.095
249	,	on well	$19 \cdot 00$	"	- 80.128	- $80 \cdot 229$	-0.101
248	,	on bridge	$20 \cdot 38$	"	-72.511	- 72.602	-0.091
247.	"	on bridge	$20 \cdot 83$	"	- 72.495	- 72.578	-0.063
246	"	on well	2\% 19	"	- 85.163	- $85 \cdot 243$	$-0 \cdot 080$
243	'	on well	$24 \cdot 14$	"	- 93.897	- 94.009	$-0 \cdot 112$
241	"	Interred at mile 68	26.90	,	- 101.499	$-101 \cdot 604$	$-0 \cdot 105$
240	,	on flooring	$28 \cdot 52$,	- $105 \cdot 059$	$-105 \cdot 180$	$-0 \cdot 121$
239	\cdots	on culvert	28.88	,	- 103.392	- 103-507	$-0 \cdot 115$
238	"	on flooring	30.01	"	- 104.109	-104-217	$-0 \cdot 108$
237	"	on stone coping f platform	80.33	,	- 106.452	$-106 \cdot 563$	$-0 \cdot 111$
236	"	on well	31.49	"	-109.506	-109.644	$-0 \cdot 138$
23 j	"	on culvert	31.79	,	- 110.838	$-110 \cdot 964$	$-0 \cdot 126$
29	.	on well	32-30	"	$-100 \cdot 767$	- $100 \cdot 908$	-0.136
233	\cdots	on well	$33 \cdot 77$,	-115.107	- $115 \cdot 266$	$-0 \cdot 159$
231	"	on stone coping of platform	35.98	"	-118.619	$-118 \cdot 744$	-0.125
230	"	Interred at mile 58	37.28	"	-123.714	- $123 \cdot 830$	$-0 \cdot 116$
229	"	on well	38.53		-114.897	-115.002	$-0 \cdot 105$
228	,	on well	$38 \cdot 86$		-113.52]	-113.673	$-0 \cdot 152$
227	"	on well	$40 \cdot 49$	"	$-112 \cdot 64$.	$-112 \cdot 74.7$	$-0 \cdot 102$
223	,	on well	$43 \cdot 41$		-116.375	-116.626	-0.251
222	"	on stone flooring	$43 \cdot 80$		-115.295	- $115 \cdot 376$	-0.081
219	'	on bridge	47-33	"	-110.063	- $110 \cdot 157$	-0.094
218	,	Interred at mile 48	47.54	"	-123.556	- $123 \cdot 664$	$-0 \cdot 108$
2	"	on well	$50 \cdot 43$	"	- $120 \cdot 536$	- $120 \cdot 66!$	-0.133
215	,	on mile-stone	$51 \cdot 70$,	-129.422	-129.487	-0.065
213	'	onl well	$52 \cdot 20$	",	- $132 \cdot 482$	-132.604	-0.122
210		on lock	$54 \cdot 66$,	- 121.088	$-121 \cdot 155$	-0.067
97	51.	on rock in situ	55.60	"	- 120.988	$-121 \cdot 04 i$	-0.054
214	63 II	on P'āhera 'I'S.	$55 \cdot 83$	"	- 57.195	- 57.230	-0.044
212		on well	52.78	"	$-129 \cdot 251-$	$-129 \cdot 367$	-0.116
96	51.15	on block	$55 \cdot 98$		-132.865	- $132 \cdot 952$	-0.087
95		Interred at milo 88	$57 \cdot 76$	"	- 139.746	-139.79?	-0.053
94	"	on well	58.88		- 138.907	$-138 \cdot 897$	$+0.010$
93	"	on well	$60 \cdot 81$,	- $138 \cdot 1023-$	- $138 \cdot 148$	-0.045
42	"	on well	61.90	"	-110.530	$-140 \cdot 582$	$-0 \cdot 052$
90	"	on well	$6: 37$		$-140 \cdot 920$	$-140 \cdot 958$	-0.038
90	"	on well	$62 \cdot 90$	"	- 139.802	$-139 \cdot 882$	-0.080

(Continued.)

TABLE 3.-Revision levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(concld.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
No.	Degree	Description		Date of original levelling	$\begin{gathered} \text { From } \\ \text { published } \\ \text { heights } \end{gathered}$	$\underset{\substack{\text { From } \\ \text { revision } \\ \text { (ung2.29.29 } \\ \text { (undjust. } \\ \text { ed) }}}{ }$	
			miles		feet	feet	feet
(Bändhi to Hyderābād) old line 52, new 101 A.							
34	40 B	on culvert	$0 \cdot 00$	1904-05-06	$0 \cdot 000$	$0 \cdot 000$	0.000
16	"	Embedded at Nawāb Shāh R.S. ...		1004-05-00	- 24.057		
7	"	Embedded at Sarhari R.S.	$37 \cdot 13$	"	- 31.388	- 31.85í	--0.467
5	"	on culvert $\quad .$.	$39 \cdot 15$	"	- $37 \cdot 318$	- 37.671	-0.353
245		Embedded at Lundo R.S.	$43 \cdot 62$		- 34.026	- 34.370	-0.344
[245	40 C	on bridge	$45 \cdot 25$	1921-22	- 40.331	- $40 \cdot 569$	-0.238
219 78	"	on culvert Embeded	$47 \cdot 12$,	- $42 \cdot 839$	- $43 \cdot 312$	-0.473
78	"	Embedded at 'I'ando Adam R.S. ...	$63 \cdot 23$	100405.06	- $47 \cdot 682$	- $48 \cdot 135$	-0.453
52	"	on bridge \quad...	$95 \cdot 65$	100403.06	- $47 \cdot 040$	- 47.946	-0.906
157	"	on stone pavement ...	97.63	"	- 34.109	- 35.027	-0.918
31 159	"	Embedded at Hyderäbād	97.79	"	- $20 \cdot 892$	- 21.812	-0.920
159	"	on stone plinth ...	$97 \cdot 95$	"	- 29.304	- $30 \cdot 215$	-0.911
160	"	on stone sill of door	$98 \cdot 32$	"	- 28.137	- 29.043	-0.906
161	"	S.B.M. at Hyderābād charch ...	98-38		- 28.762	- 29.667	-0.90а
155	"	on stone step \quad...	99•73	",	- 9.568	- 10.481	-0.913
156	"	on verandah	99-82	",	- 9.202	- 10.113	-0.911
154	"	on stone step	99-99		- 7.491	- 8.390	-0.899
217 3	,	on stone step	99-44	1920-2]	- 57.997	- 58.913	-0.916
33	"	on bridge	99.96	1904.05.06	- $42 \cdot 896$	- $43 \cdot 815$	-0.920
416 417	"	on culvert	$99 \cdot 46$	1924-25.26	- 58.964	- 59.829	-0.865
$4 \begin{aligned} & 417 \\ & 418\end{aligned}$,	at base of water-column ...	99.63	"	- 59.310	- $60 \cdot 183$	-0.873
418 419	"	on step	$100 \cdot 36$	",	- 60.719	- 61.590	-0.871
419 152	,	on M.B. pillar .	101-51	"	+ 2.447	$+1.601$	-0.846
15	"	Type C at Ganjo Takkar hill ...	101.53	1004-05.06	+ 3.402	+ 2.582	-0.820
(Dehra Dūn to Kälsì) old line 61 D .							
10	53 J	Shaw's Refraction station, Dehra Dūa ...	0.00	1908	0.000	$0 \cdot 000$	$0 \cdot 000$
12	"	S.B.M., Delura Dūn ${ }^{\text {and }}$	0.02		+ 1.587	+ 1.685	-0.002
12	"	Iron plag, Debra Dūn ...	$0 \cdot 19$	"	- $5 \cdot 769$	- $5 \cdot 775$	-0.008
6 129		S.B.M., Dehra Dūn	$0 \cdot 25$		- 2.767	- $2 \cdot 760$	$+0.007$
$\begin{array}{r}129 \\ 44 \\ \hline\end{array}$	53 F	Bridge at Kanlāgir	$4 \cdot 93$	"	- 155.255	- $155 \cdot 230$	+0.025
44 47		Fillar at Tons river	6.97		-343.651	- $343 \cdot 600$	+0.061
47 49		Pillar at Sahaspar	$16 \cdot 83$		- 690.474	-629.523	+0.951
49	"	Pillar at Aunbäri	24.94	"	-630.065	-629.064	+ $\mathrm{J} \cdot 001$

TABLE 4.-List of triangulation stations connected by spirit-levelling, season 1928-29.

TABLE 4.-List of triangulation stations connected by spirit-levelling, season 1928-29 -(concld.).

TABLE 5.-Lines Dehra-Kālsī-Mussoorie \& Kālsī-Chakrātā-Mussoorie Comparisons of unadjusted orthometric heights as determined in different seasons.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sections \& \[
\begin{aligned}
\& 1903-04 \\
\& \text { (S.D.L.) }
\end{aligned}
\] \& \[
\begin{gathered}
1905-06 \\
\text { (S.D.L.) }
\end{gathered}
\] \& \(\left|\begin{array}{c}1908-09 \\ \text { (S.D.L.) } \\ \text { Training } \\ \text { school }\end{array}\right|\) \& \begin{tabular}{l}
1926 \\
Training school
\end{tabular} \& \[
\begin{gathered}
1926-27 \\
\text { (H.P.) }
\end{gathered}
\] \& \[
\begin{gathered}
1928 \cdot 29 \\
\text { (H.P.) }
\end{gathered}
\] \\
\hline \& teet \& feet \& feet \& feet \& feet \& feet \\
\hline \[
\begin{aligned}
\& \text { (1) Dehra (B.M. } \\
\& 12 / 53 \mathrm{~J}) \cdot \mathrm{R} \cdot \mathrm{aj}- \\
\& \text { pnir (B.M. } \\
\& 21 / 53 \mathrm{~J}) \quad \ldots
\end{aligned}
\] \& .. \& +1636.547 \& \& ... \& +1636.582 \& ... \\
\hline \[
\begin{aligned}
\& \text { (2) Rājpur (B.M. } \\
\& \text { 21/53.J) } \\
\& \text {-Mussoorie } \\
\& \text { (B.M.45/53J) }
\end{aligned}
\] \& \(\ldots\) \& + \(2712 \cdot 825\) \& ... \& +2714•792 \& +2712.790 \& ... \\
\hline (3) Dehra-Mussoorie(1) + (2) \& + 4349.757 \& + 4349-312 \& ... \& ... \& + 4349•372 \& ... \\
\hline \& -.. \& [\& -624.296 \& ... \& -.. \& - \(625 \cdot 311\) \\
\hline (5) Ambäri (B.M. \(49 / 53 \mathrm{~F}\)) Mu ssoorie (B.M. 45/53J) via BLadrāj ... \& ... \& ... \& - \& ... \& ... \& + 4973.324 \\
\hline (6) Ambäri (B.M. 49/33 F)-CLakrātā(Serial 7) \& \& ... \& \(\ldots\) \& \(\cdots\) \& \(\cdots\) \& +5166.923 \\
\hline (7) Chakrāté (Serial 7) -Mussoorie (B.M.15/53J) \& ..

\ldots \& ... \& ... \& ... \& . \& - 103.656

\hline (8) Dehta-Mussoorie via Bhadrāj (4) + (5) $\quad .$. \& ... \& ... \& ... \& ... \& ... \& +4530.013

\hline (9) Dehra-Mnss. oorie via Cluakrätā

$$
(4)+(6)+(7)
$$ \& , \& ... \& ... \& ... \& ... \& +4949.858

\hline
\end{tabular}

Chapter VII

RESEARCH AND TECHNICAL NOTES
BY
Dr. J. de Gráaff Hunter, sc. d.
and
Captain G. Bomford, ree.

I. Dynamic and Orthometric heights

1. Summary of paras 1-3.-In the deduction of dynamic and orthometric heights from observed spirit-levelled heights, gravity is ordinarily assumed to have its normal formula value depending only on height and latitude. An example is given of a more rigorous deduction of dynamic and orthometric heights.
2. Dynamic height.-For the deduction of dynamic heights the Survey of India has adopted a series of equipotential surfaces of which those characterised by whole numbers of feet are each separated by one foot in a locality where gravity at a height of h feet is given by the formula

$$
\begin{aligned}
g_{s} & =\gamma_{s}(1-2 h / R) \\
& =978 \cdot 00\left(1+\cdot 005310 \sin ^{2} 24^{\circ}-2 h / R\right) .
\end{aligned}
$$

At the time when this system was adopted the above formula was considered to represent normal gravity in latitude 24°. More modern formulæ differ, but it still forms a perfectly reasonable basis for the computation of dynamic and orthometric heights. g_{5} is thus standard gravity at any height, and γ_{s} is standard gravity at sealevel. Then the separation between two consecutive standard equipotentials at any other place will be $1-\left(g-g_{s}\right) / g_{s}$ feet, where g is the actual value of gravity at that place.

Let \mathbf{M} be the height of a certain bench-mark as directly computed from spirit-levelling without dynamic correction, let \mathbf{D} be its dynamic height, let \mathbf{O} be its orthometric height, and let $\mathbf{M} \doteqdot \mathbf{D} \doteqdot \mathbf{0}$ H, H being used for the height of the B.M. when the distinction between \mathbf{M}, \mathbf{D} and \mathbf{O} is of no consequence.

Then

$$
\begin{equation*}
\mathbf{D}=\mathbf{M}+\int_{0}^{\mu}\left(g-g_{v}\right) d h / g_{s} \tag{1}
\end{equation*}
$$

g being the value of gravity at the place where each element $d h$ is measured, and the integration being along the line of levelling.

$$
\begin{aligned}
& \text { Now } \quad \begin{aligned}
g & =\gamma(1-2 h / R+3 h / 4 \cdot 18 R)+T+A \\
\text { where } & \\
\gamma^{*} & =978 \cdot 030\left(1+\cdot 005302 \sin ^{2} \phi-\cdot 000007 \sin ^{2} 2 \phi\right), \\
T & =\text { Orographical correction (difference from plateau), } \\
& A
\end{aligned}=\text { Bouguer anomaly. }
\end{aligned}
$$

$$
\text { Whence } \begin{align*}
\left(g-g_{s}\right) / g_{s} & =\left(\gamma-\gamma_{s}+3 \gamma h / 4 \cdot 18 R+T+A\right) / g_{s} \\
& =\left(\gamma-\gamma_{s}+3 \gamma_{s} h / 4 \cdot 18 R+T+A\right) / \gamma_{s} \ldots \tag{2}\\
& \text { with sufficient accuracy. }
\end{align*}
$$

All the terms of this expression can be calculated at any point, except A, the anomaly. This is known if gravity has been observed at a number of points, and if the changes in A from point to point are sufficiently regular to justify interpolation. It is for this reason that the Bouguer formula has been used in preference to the Hayford; it is believed to be likely to give more accurate interpolation in small hilly areas, and has certainly done so in the area at present under consideration. The value of T does not vary greatly from place to place; it depends primarily on the roughness of country, and is not essentially different between hill and valley. If it is calculated at a number of points, it can be interpolated at intermediate points.

Then a chart can be drawn showing lines of equal $\gamma-\gamma_{s}$, lines of equal T, lines of equal A, and finally lines of equal K, where $K=1000\left(\gamma-\gamma_{s}+T+A\right) / \gamma_{s}$.

Then we have $\mathbf{D}=\mathbf{M}+\int_{0}^{\pi}\left(\frac{K}{1000}+\frac{3 \cdot 4 \cdot 2 h}{100,000}\right) d h$, and \mathbf{D} can easily be calculated with the help of the chart.

Chart XXIV shows lines of equal $\boldsymbol{\gamma}-\boldsymbol{\gamma}_{s}, A$ and K in the area Dehra Dūn, Kālsì, Mussoorie and Chakrātā. Actual values of A and T are entcred at places where pendulums have been swung, and orographical corrections computed, respectively. The small and regular variation of A is very notable in spite of the roughness of the country.

The result of applying the dynamic correction rigorously is to make an appreciable change in the dynamic height. (Between $0 \cdot 1$ and 0.2 in the case of the heights of Mussoorie or Chakratia above Dehra). It might also be expected to improve the closing error of circuits a little, although T and A are the only terms in (2) which can contribute anything to this, since $\int h$. dhi round a cirenit is zero. Neglect of the rigorous correction can only cause scrious closing arror if the rise in a circuit occurs in an area with ancmalies considerably different from those in the area in which the fall occura, or if the rises and falls occur in areas with notahly difecent orgeraphical corrections. An example of the latter case is a circait rising up a gently sloping plateau, falling abruptly over its edge, and returning to its starting point through flat plains. In the two eircuits

[^22]shown in Chart XXIV, the closing errors are not much changed by the rigorous method of computing the dynamic correction. Thus the circuit Dehra-Kālsī-Bhadrāj-Mussoorie-Dehra, 66 miles, has the exceptionally large closing error of 0.658 feet with the usual correction, and the almost identical error of 0.662 feet with the rigorous. In the Kälsī-Chakrātā-Mussoorie-Bhadrāj-Kālsī circuit, 83 miles, the rigorous method improves the closing error from 0.057 to 0.014 feet, but in view of the inaccuracy of levelling with wooden staves in hill circuits, this improvement must be considered to be largely due to chance.

The subject is discussed further in para 10 of this chapter.
3. Orthometric height.- The orthometric height of a bench-mark is its vertical height above the standard sea-lavel equipotential beneath it. Since the separation between any two standard equipotentials is $1-\left(g-g_{s}\right) / g_{s}$ feet (see para 2), we have

$$
\begin{equation*}
\mathbf{O}=\mathbf{D}-\int_{0}^{H}\left(g_{h}-g_{s}\right) d h / g_{s} \tag{3}
\end{equation*}
$$

where g_{h} is the value of gravity at a point h feet above sea-level on the vertical through the bench-mark. The integration is performed along the vertical.

As in (2), γ_{s} may be written for g_{s} in the denominator with sufficient accuracy, and

$$
\mathbf{O}=\mathbf{D}-\frac{\left(\gamma-\gamma_{s}\right) H}{\gamma_{s}}-\frac{A H}{\gamma_{s}}-\frac{1}{\gamma_{s}} \int_{0}^{H I} \begin{gather*}
(\text { vertical attraction of } \tag{t}\\
\text { Topography }) d h
\end{gather*} \ldots
$$

In this equation the term $\left(\gamma-\gamma_{s}\right) H / \gamma_{s}$ is the usual orthometric correction*, the term $A H / \gamma_{s}$ presents no difficulty if A is known or can be interpolated \dagger, but the term $I=\int_{0}^{H}($ attraction of Topography $) d h$ requires investigation.

Following the Bouguer system, the topography may be considered to consist of a plateau, combined with hills and valleys. At the surface the attraction of a plateau is downwards, at sea-level it is upwards; the two cancel, and as regards the plateau the integral $\int_{0}^{H} g \cdot d h$ is easily seen to be zero.

Then in evaluating I it is only necessary to measure the topography in terms of its height above or below the bench-mark.

Divide the topography into zones and compartments in the usual way, (see Chart XXV, figure 1). Then it is required to find $\int_{0}^{H}($ attraction of ABCD$) d h$. Since only a low order of accuracy is

[^23]Fig. 1 Orthometric Correction

Fig. 2 Geoidal Rise

required, the mass of ABCD may be considered concentrated at its centre of gravity. Then for any compartment

$$
\begin{aligned}
I & =-k \int_{0}^{H} \frac{\theta a \pi}{2 \pi}\left(r_{2}^{2}-r_{1}^{2}\right) \frac{\left(H-\frac{a}{2}-h\right)}{\left[\left(\frac{r_{0}+r_{1}}{2}\right)^{2}+\left(H-\frac{a}{2}-h\right)^{2}\right]^{\frac{3}{2}}} d l . \\
& =k \theta a\left(r_{2}^{2}-r_{1}^{2}\right) \frac{(\cos a-\cos \beta)}{\left(r_{2}+r_{1}\right)}
\end{aligned}
$$

$$
\text { where } a=\tan ^{-1} \frac{9 H-a}{r_{2}+r_{1}}
$$

$$
\beta=\tan ^{-1} \frac{a}{r_{2}+r_{1}}
$$

To eliminate k, we have $g=$ attraction of the Earth

$$
=\frac{4}{3} \pi h \cdot \frac{R^{3}}{R^{2}} 2 \cdot 09,
$$

2.09 being the ratio of the earth's mean density to mean surface density, and R being earth's mean radius.
whence $I / g_{s}=\frac{3 \theta_{a}\left(r_{2}^{2}-r_{1}^{2}\right)}{1 \pi R 2 \cdot 09} \times \frac{(\cos a-\cos \beta)}{\left(r_{2}+r_{1}\right)}$

$$
\begin{equation*}
=\frac{\theta a}{2 \pi} \frac{1}{29 \cdot 2.10^{6}}\left(r_{2}-r_{1}\right)(\cos a-\cos \beta) \text { feet } . . \tag{5}
\end{equation*}
$$

where a is the height of the compartment below the station, and r_{2} and r_{1} are measured in feet.

Equation (5) has to be summed for all necessary zones and compartments.

The full computation has been made in the case of two benchmarks at Dehra Dün and Mussoorie, as follows:-

	Debra Dūn B. M. 10/53. I	Mussoorie B.M. 51/53J
Height	2234. feet	6740 , feet
$\left(\gamma-\gamma_{*}\right) \Pi / \gamma_{,}$	+1.108 feel	$+3 \cdot 340$ feet
A	-0.123 cm/sec:	$-0.145 \mathrm{~cm} / \mathrm{sec}^{2}$
A H / γ,	-0.281 jert	-0.008 feet
1/ γ,	-0.01 feet	-0.22 feet
O-D	-0.84. fcet	-2.56 feet

The height of Mussoorie above Dehra as arrived at by different methods may now be summarised as follows:-
Observed difference, via Rājpur (1927) 4505.966 feet
Dynamic difference, usual method $4508 \cdot 140$ "
Dynamic difference, rigorous method $4508 \cdot 261$ Orthometric difference, usual method 4505.86 ", difference Orthometric difference, rigorous method 4506.54 ", $\}_{0.68 .}$

According to the Dehra-Kālsi-Mussoorie observations these figures should be between 0.6 and 0.7 feet greater. The Dehra-Rajpur-Mussoorie levelling of 1905-07 agrees with the 1927 values within 010.

II. Height correction to Deviation of the Vertical

4. Summary of paras 4-6.-It is customary to apply to latitude observations a small correction of $0.000053 \mathrm{H} \sin 2 \phi$ on account of the lack of parallelism between the ground level and sealevel equipotential surfaces at points on the same vertical. In hilly country this lack of parallelism may amount to some seconds, i.e. to several times the formula value, and may occur in the prime vertical as well as in the meridian. Some examples are given of a rigorous reduction to sea-level, and of the resulting change in the geoidal height of a station, as deduced by triangulation.
5. Calculation of the correction.-The intensity and direction of gravity at any point is given by the vectorial sum of:(a) The attraction of the spheroid, corrected for height, viz, $\gamma_{0}-2 g H / R$.
(b) The attraction of a plateau of the same height as the station viz, $3 g H / 4 \cdot 18 R$.
(c) The attraction of the hills and valleys in the plateau.
(d) The attraction of the anomalies.

The deflection is given by the ratio which the components of the above attractions, which lie tangential to the spheroid, bear to the normal components. Comparing the deflections at ground level and sea-level vertically beneath, it is clear that the vertical components are sensibly the same (within 0.1%) : the change in the horizontal component of the attraction of the spheroid is allowed for by the usual height correction: the horizontal attraction of the plateau is zero in both cases: the attraction of the anomalifs may be different, but in as much as Bouguer anomalies are primarily caused by more or less deep-seated lack of compensation, it is not unreasonable to assume the change in the horizontal component to be small and to neglect it: as indeed is inevitable. It remains to calculate the change in the horizontal attraction of the topography. In rough country at a considerable height above sea-level, this may be considerable: for it is clear that a surface excess or
defect may cause appreciable deviation of the vertical at a near-by station at its own level, but much less at a point some thousands of feet below.

Let the country surrounding a station be divided up into zones and compartments in the usuai way, so that 100 feet of height in each compartment corresponds to a deviation of the vertical of 0 ". 01 at the station (see Hayford, "Figure of the Earth and Isostasy"). Let the total horizontal attraction at the station of the topography in any one zone be F, and let the attraction of the same topography at sea-level below the station be F_{0}. Then the ratio F_{0} / F depends on the bounding radii of the zone, and on the height of the station, and is easily calculable. It is clear that the resulting deflections bear the same ratio, with the result that:-

$$
\begin{equation*}
\phi-\phi_{0}=\eta-\eta_{0}=\Sigma \eta_{\mathrm{T}}\left(1-F_{0} / F\right) \tag{6}
\end{equation*}
$$

where $\phi=$ observed latitude $-\cdot 000053 H \sin 2 \phi$,
$\phi_{0}=$ latitude fully reduced to sea-level,
$\eta=$ observed deflection - $000053 H \sin 2 \phi$,
$\eta_{0}=$ deflection at sea-level,
$\eta_{\mathrm{T}}=$ the estimated topographical deflection,
and ($1-F_{0} / F^{\prime}$) is given in Table 2.
The summation is taken over all the usual topographical zones. Northerly deflections are reckoned negative.

And in the prime vertical:-

$$
\begin{equation*}
\left(\lambda-\lambda_{0}\right) \cos \phi=\xi-\xi_{9}=\Sigma \xi_{\mathrm{T}}\left(1-F_{0} / F^{\prime}\right) \tag{6a}
\end{equation*}
$$

where $\lambda=$ observed longitude,
$\lambda_{0}=$ longitude reduced to sea-level,
$\xi=$ observed deflection, $\xi_{0}=$ deflection at sea-level, $\xi_{\mathrm{T}}=$ estimated topo deflection.
Easterly deflections are reckoned negative.
Topographical deflections may be estimated with or without isostatic compensation. The differential effect is only considerable in the case of near zones, where the Hayford compensation factor is nearly unity. Since it can hardly be believed that Hayford compensation follows the surface features in minute detail, it is probably best to ignore it for the purpose of this reduction, but the inaccuracy of the final result camot be considered to be much less than the difference between the results of computation with and without compensation.
6. Application to Dehra-Mussoorie.-Between Dehra Dūn and Mussoorie are a number of deflection stations, (see Chart XXIV), which have been atilised to deduce the rise of the geoid between these two places. They have now been rigorously reduced to sea-level (see Table 1), and the gooidal rise recomputed.

TABLE 1.

Station	Latitucle	Longitude	Height	Deflection at surface $-0.000053 \times$	Deflection
	"	- 1	feet	"	"
Debra Dün	$\begin{array}{lll}30 & 19 & 29\end{array}$	$\begin{array}{llll}78 & 3 & 22\end{array}$	2340	36.9 N	36.8 N
III	$\begin{array}{lll}30 & 21 & 47\end{array}$	$\begin{array}{llll}78 & 4 & 07\end{array}$	2660	41.0 N	$40.9 \mathrm{~N}^{*}$
IV	$\begin{array}{lll}30 & 22 & 09\end{array}$	$78 \quad 4 \quad 31$	2780	$42 \cdot 2 \mathrm{~N}$	$42.0 \mathrm{~N}^{4}$
V	$\begin{array}{lll}30 & 22 & 52\end{array}$	$78 \quad 5 \quad 21$	2980	$44 \cdot 4 \mathrm{~N}$	$43.9 \mathrm{~N}^{4}$
VI	$\begin{array}{lll}30 & 23 & 31\end{array}$	$78 \quad 602$	3050	45.9 N	44.9 ${ }^{\text {* }}$
Rajpar	$\begin{array}{lll}30 & 23 & 57\end{array}$	$\begin{array}{llll}78 & 6 & 00\end{array}$	3500	$47 \cdot 7 \mathrm{~N}$	46.0 N
Spar Point	$\begin{array}{lll}30 & 24 & 38\end{array}$	$\begin{array}{lll}78 & 5 & 36\end{array}$	3850	53.2 N	$48 \cdot 9 \mathrm{~N}$
Jharipüni	$\begin{array}{lll}30 & 25 & 10\end{array}$	$\begin{array}{lll}78 & 5 & 21\end{array}$	5150	52.5 N	47.2N
Massoorie	$\begin{array}{lll}30 & 27 & 41\end{array}$	$\begin{array}{lll}78 & 4 & 17\end{array}$	6937	36.8 N	$3 \overline{3} \cdot 1 \mathrm{~N}$

It will be noticed that the deflection at Jharipani is changed by over 5.". Spur Point and this station are unusual stations situated on the side of the hill, but even at Mussoorie on top of the hill, the correction is as much as $1^{\prime \prime} \cdot 7$. Using the uncorrected deflections the geoidal rise may be computed to be 10.56 feet. Using the sea-level values it is $10 \cdot 11$, a difference of $0 \cdot 45$ feet.

In Professional Paper 14, pages 22 and 28, it is shown that if the geoidal rise be taken as $10 \cdot 2$ feet \dagger, the triangulated height of Mussoorie above Dehra is 194 feet greater than that derived from spirit-levelling computed with the usual orthometric correction. Hence from the table at the end of para 3, it is seen that the triangulated height of Mussoorie above Dehra is:- \ddagger
$4.507 \cdot 44$ feet, if the geoidal rise is computed with usual values of the deflections.
1.507 .89 feet, if the geoidal rise is computed with sea-level values of deflections.
It will be noticed that the disagreement between the spiritlevelled and triangulated heights is lessened to the extent of 0.68 feet by the rigorous application of the orthometric correction (see end of para 3), but is increased by 0.45 feet by the reduction of deflection observations to sea-level. (See above).

[^24]
III. Comparison of Spirit-Levelled and Triangulated Heights.

7. Summary of paras 7-10.-The rigorous application of the orthometric correction to levelling, and the rigorous reduction to sen-level of deflections used for computing the geoidal rise, are shown to make essentially equal changes in the geoidal height of a station as deduced by spirit-levelling on the one hand, and by triangulation on the other. The necessity for these rigorous corrections is discussed, and it is concluded that if both be omitted little harm will result, whereas their inclusion involves an almost impossible amount of labour.
8. The two corrections are identical.-In para 5 the change in the geoidal rise which results from reducing all observed deflections to sea-level, has been computed by considering in detail the attraction of the topography, both at every station, and at sealevel below every station. A more general expression can be obtained as follows:-

In Chart XXV, figure 2, D is one station (Dehra Dūn) and M is another (Mussoorie). P is any intermediate station (Jharipani), S is the spheroirl, $G_{1,}$ the greoid; G_{11} and G_{n} are other equipotentials. θ is the inclination to the spheroid of the ground level equipotential at P, and θ_{11} is the inclination of the geoid below P.

If R (i. e. $\mathrm{M}_{0} \mathrm{M}_{\mathrm{s}}-\mathrm{D}_{0} \mathrm{D}_{\mathrm{s}}$) be the geoidal rise between Dehra and Mussooorie, and if R^{\prime} be that deduced if ground level deflections are used (i. e. if $G_{0} G_{0}$ and $G_{n} G_{n}$ are assumed parallel), we have:-

$$
\begin{equation*}
R^{\prime}-R=\int_{\mathrm{D}}^{\mathrm{M}}\left(\theta-\theta_{o}\right) d x \tag{7}
\end{equation*}
$$

r being the horizontal component of distance measured along the linte.

Now since the intensity of gravity is inversely proportional to the spacing of the equipotentials, we have at P :-

$$
\begin{aligned}
& \left(P\left(\mathrm{x}^{\prime}-\mathrm{PQ}\right) / \mathrm{PQ}=\frac{d q}{d x^{\prime}} \delta_{x} / g\right. \\
& \left(\mathrm{P}^{\prime} \mathrm{Q}^{\prime}-\mathrm{PQ}\right) / \delta x . \mathrm{PQ}=\frac{d g}{d x} / g \\
& \text { and } \theta-\theta_{11}=\int_{\mathrm{P}_{0}}^{\mathrm{P}^{\prime} \mathrm{P}^{\prime}-\mathrm{P} \cdot \mathrm{PQ}} d h=\frac{1}{g} \int \frac{d y}{d x} \cdot d h
\end{aligned}
$$

the interrals being taken over the area $\mathrm{D}_{0} \mathrm{D}$ P M M $\mathrm{M}_{0} \mathrm{~F}_{0}$

$$
\begin{equation*}
=\frac{1}{g} \int_{0}^{H} \Delta g \cdot d h \tag{8}
\end{equation*}
$$

where Δg is the difference between gravity at any point on MM_{0}, and its value at the same beight on DD_{0} or DPM.

Now from (1) and (3) we see that the orthometric correction to the line $\mathrm{D}_{0} \mathrm{DPM} \mathrm{M}_{0}$ is given by

$$
\mathbf{O}-\mathbf{M}=\int_{0}^{H}\left(g-g_{s}\right) d h / g_{s}-\int_{0}^{H}\left(g-g_{s}\right) d h / g_{s}
$$

the first integral being taken along the line of levelling, and the second along MM_{0}.

$$
=\frac{1}{g} \int_{0}^{H} \Delta g \cdot d h
$$

as in (8), since the distinction between g and g_{s} is immaterial in the denominator.

It is thus proved that the orthometric correction is equal to the difference between the geoidal rise as computed correctly and as computed with surface values of the deflection. And it is clear that the error in the orthometric correction due to the use of formuls values of gravity, is equal to the error in geoidal rise due to the use of formula corrections to sea-level.
9. The height of Mussoorie above Dehra Dun.-In para 3 the application of the rigorous orthometric correction changed the spirit-levelled height by 0.68 feet; in para 6 the reduction of deflection to sea-level has changed the triangulated height by 0.45 feet. It is shown in para 8 that these two figures should be identical. The size of the discrepancy is not altogether surprising. The second figure, especially, contains possible sources of error. It has been derived by integrating up the value of $\theta-\theta_{0}$ at the few latitude stations between Dehra and Mussoorie. Although these stations are reasonably typical, this integration cannot be expected to give high class accuracy, for the value of $\theta-\theta_{0}$ depends especially on the near topography, which varies rapidly from place to place. In particular, it is to be expected that at places between Jharipani and Mussoorie $\theta-\theta_{0}$ will be greater than has been derived by interpolation between these two places: for the ground is very steep, all the way up to Mussoorie. Of the two figures 0.68 is probably the more correct.

The height of Mussoorie (B.M. 51) above Dehra Dūn (B.M 10) may be summarised thus:-

By spirit-levelling, fully corrected 4506.54 ft .
By triangulation, fully corrected 4507.89 ft .
Triangulation minus levelling $\quad 1.35 \mathrm{ft}$.

It seems impossible to explain this discrepancy on any ground other than observational error, probably in the levelling. In Professional Paper 14 it has been shown that it is exceedingly unlikely to be due to refraction or other errors in the angles of the triangulation. In Professional Paper 22 it has been shown that it is unlikely to be due to refraction error in the levelling, but it is possible that it is due to errors in staff length (see Chapter VI of this report, para 6).

It may be remembered that levelling via Kalsī lessens thịs discrepancy by 0.6 or 0.7 feet (see para 3). It is hoped that relevelling with invar staves will settle the problem. A further possible source of error is in the horizontal distance between the triangulated stations, but this cannot be now verified, on account of the destruction of one of them.
10. Conclusions.-In hilly country the rigorous application of the dynamic and orthometric. corrections is an immense labour. In flat country it is of no consequence. In para 2 it has been shown that it has no great effect on the closure of circuits, and in para 8 it is shown to have no effect on comparison with triangulated height, provided the deflections from which the geoidal rise is computed are reduced to sea-level by the formula value only. It is true that the use of formula values of gravity results in heights being expressed in an unknown unit above an unknown datum, but no discrepancies arise to cause trouble, the error is not great (0.7 feet in 7000 at Mussoorie), and it does not change abruptly between one bench-mark and another near one. It may be concluded that the labour required to express results in true units above the geoid is not justifiable.
TABLE 2.- $1-\boldsymbol{F}_{0} / \boldsymbol{F}$.

PUBLICATIONS

OF THE

SURVEY OF INDIA

Obtainable from the Director, Geodetic Branch, Survey of India, Dehra Dūn, U.P.

SYNOPSIS

Part I-Numerical Data

| | | | | Page |
| :--- | :---: | :---: | :---: | ---: | ---: |
| Triangulation Pamphlets | \ldots | \ldots | \ldots | 131 |
| Levelling Pamphlets | \ldots | \ldots | \ldots | $131-135$ |
| Tide-Tables \ldots | \ldots | \ldots | \ldots | 135,136 |

Part II-Geodetic Works of Reference

Everest's Great Are Books	\ldots	\ldots	\ldots	136
G.T.S. Volumes	\ldots	\ldots	\ldots	\ldots
136, 140				

* Part III-Historical and General Reports
Memoirs 140

Annual and	Special					
Reports	\ldots					
	\ldots		General Reports	\ldots	140	
:---	:---	---:	---:			
Map Publication and Oofice Work	\ldots	141				
Extracts from Narrative Reports	\ldots	141				
Records of the Survey of India	\ldots	142,143				
Geodetic Reports	\ldots	\ldots	$14: 3,144$			

* Part IV-Catalogues and Instructions

Departmental Orders \ldots	\ldots	\ldots	\ldots	144,145
Catalogues and Lists \ldots	\ldots	\ldots	\ldots	145
Tables and Star Charts	\ldots	\ldots	\ldots	145,146
Old Manuals	\ldots	\ldots	\ldots	146
Survey of India Hand-books	\ldots	\ldots	\ldots	147
Notes and Instructions	\ldots	\ldots	\ldots	147,148

* Part V-Miscellaneous Papers

Unclassified Papers $\left\{\begin{array}{l}\text { Geography, Exploration, Special Reports, } \\ \text { Geodesy, Projections, Maphing }\end{array}\right.$
Professional Papers 150-152
Departmental Papers $15 \vdots$
Professional Forms 152
List of more important contributions by the officers of the
Survey of India to various extra-departmental publica-
tions and related articles
1:33-1.56

[^25]Sterling Prices of Publications.-The prices to be charged for Survey of India publications in sterling equivalents in English money have beon workel out under the rules given in letter No. A-401 dated the 17 th lannary 1924 from the Under Secretary to the Governnent of India, Department of Industries and Labur, Delhi, to the Secretary to the Hirh Commissioner for India, General Department, 42 Grosvenor Gardens, London, S.W. l. These sterling prices are subject to fluctuation with the exchange rate and will be revised from time to time. The prices at the current rate of exchange are :-

$\begin{gathered} \text { Price in } \\ \text { Iudian money } \end{gathered}$		lenglish equivalent	
Rupees	Annas	shilling	Pence
19	$\underline{2}$	0	3
U	4	0	5
0	8	0	10
0	12	1	3
1	0	1	9
1	2	1	11
1	8	2	6
1	12	3	0
\because	0	3	6
2	8	4	(${ }^{\text {a }}$
3	0	5	3
3	8	6	$1)$
4	0	${ }^{6}$	$?$
4	4		3
4	8	7	6
5	0	8	3
5	x	9	0
6	0	9	9
6	8	10	6
7	0	11	${ }^{6}$
7	s	12	0
	1	13	${ }^{6}$
4	¢	14	(i
9	0	15	0
!	s	$1{ }^{\text {i }}$	1
111	1	19	(i)
110	s	17	(i
12	11	19	${ }^{6}$

PART I.-NUMERICAL DATA

Triangulation Pamphlets-each covering one square degree, giving descriptions, positions. (latitude and longitude) and heights of trianıulated points and other data with chart. The chart shows the plin of triangulation with the position of stations and points. Triangulation data falling in $1 / \mathrm{M}$ sheet are printed in a series of sixteen panphlets A to P. In the last pamphlet of every series, a coloured map on scale 1 inch $=16$ miles approximately is given in addition to the chart, to illustrate the topographical features of the area covered by the $1 / \mathrm{M}$ sheet. Pamphlets having this map are charged Iis. 1-8 extra.

Inder chaits of the published triangulation pamphlets are given at the end.

Price Re. 1 per pamphlet. Published at Dehra Dūn.

Levelling Pamphlets-

(i) Levelling of Precision-giving heights and descriptions of all Benchmarks, tixed by Levelling of Precision. Each pamphlet embraces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{M}$ map of India. Each is illustrated by a map of the area. Published at Dehra Dūn.
(a) Levelling of Precision in India and Burma-

Pamphlet			Latitude	Longitude	$\begin{gathered} \text { Pulb- } \\ \text { lislece } \\ \text { in } \end{gathered}$	Price
Slicet	Distinctive name of sheet					
34	(Quetta)		$\underline{2} \stackrel{S}{\circ}^{\circ}-3{ }^{\circ}$	$6{ }^{\circ} \mathrm{i}-69$	1916	Rs. 2-0.0)
35	(Karāchi)		$24-28$	64-68	1911	Rs. 2.11 .0
38	(Kābul)		3:-36	6*-72	1912	Rs. $2 \cdot 0.0$
39	(Multān)		28-32	68-72	1913	Rs. 2.0 -0
	addendum to 39		1916	Rs. $2 \cdot 0-0$
40	(Hyderäbād, Sincl)		24-28	68-72	1911	Rs. 2.0 .0
41	(Räjkot)	\ldots	20-24	6s--72	1913	Rs. ${ }^{\text {2.0.0 }}$
4;	(Srimagar)		32-36	7-76	1913	Rs. 2.0-0
	Addendum to 1:3				1915	Rs. 2-0.0
4 k	(Lahore)		28-82	72-76	1926	Rs. 3-0-0
4.	(Ajmer)		24-28	72-76	1911	Rs. 20.0
16	(Barrodi)		20-24	72-76	1912	Rs. 20.0 .0
47	(Bombay)		$16-0$	72-76	1919	Rs. 2-0-0
	Addendum 10 47, Island of Bombay		\ldots		1915	Re. i.0.f
18	(Goa)		12-16	7-2-7	1912	Rss. $2-0.0$
19	(Calicut)	...	$8-12$	$72-76$	1911	Re, 1-0.0
5	(I.eh)	..	30-36	$711-811$	1910	Re. 1-0.0)
53	(Dellia)	...	98-39	7(3-40)	$\begin{gathered} 1920 \\ \text { (reprintel } \end{gathered}$	Rs. 3-10.0
51	(Agra)		-4-28	76-80	$\begin{aligned} & 11929 \\ & 1021 \end{aligned}$	Rs. 2 -(0) 0

Levelling Pamphlets-(Continued).

(b) Levelling of Precision in Mesopotamia-

Descriptions and heights of bench-marks in Mesopotamia in one pamphlet, publisherl at Dehra Dūn, 1923.

Price Rs. 3 .
(ii) Levelling of Secondary Precision-

Descriptions and heights of bench-marks by lines generally produced by Giestetner at Dehra Dūn.

霉会	Line number	Sitnated in degrea sheets	$\int_{\substack{\text { Pablished } \\ \text { in }}}$	Price
1	5od (Ruk to Sehwain)	$35 \mathrm{M} \& \mathrm{~N}$ and 40 A	1928	As, 6
2	32 B (Daur to Lundo)	$40 \mathrm{~B} \& \mathrm{C}$	"	"
3	52C (Shālıpur to Malırābpur)	3.5 Nand 40		
4	52D ('Tando Alāhyār to Hycderābād)	$\begin{gathered} A, B, C, F \& G \\ 40 \mathrm{C} \& \mathrm{D} \end{gathered}$	",	",

Levelling Pamphlets-\{Continued).

	l.ine number	Situated in degree sheets	$\underset{\text { in }}{\substack{\text { Pablisheà }}}$	Price
5	52E (Rohri to Jàm Sahib)	$40 \mathrm{~A}, \mathrm{~B} \& \mathrm{E}$	1928	As. 6
1	52F (Shāhpur to Mīrpur P?urāıa)...	$40 \mathrm{~B}, \mathrm{O}$ \& G		"
7	$5 \because G$ (Lāudhi canal bungalow (39th mile $)$ to Khipro)	40 C \& G	"	
8	52 H (Khipro to ('̇hulàm Bhurgari)	40 (${ }^{\text {a }}$,	"
9	52 I (Mīrpur Khās to 'Tando Ghulàm Alī via Umarkot and Dādāh)	$40 \mathrm{C}, \mathrm{D}, \mathrm{G} \mathrm{\&} \mathrm{H}$	"	"
10	52J (Mīrpur Khās to 'Tando Ghu-	40 G	,	
11	52 K (Dīgrì to Dādāh)	$40 \mathrm{G} \& \mathrm{H}$,	
12	70J (Barākar to Hazāribăgh Road)	73 I and 72 H d L	"	As. 12
13	74C (Howraih to Uitarpāra) 74 D (Baidyabāti to Sheorāphūli) 74 © (Bāudel Church to Bāndel Ry. Stn.) 74 F (B.M. 251(118)/79A to Pandua Ky. Stn.)	79 A \& B	"	As. 8
14	74G (B. M. 126/73M to Sakticarlı Ry. Stn.) 74 H (B.M. 116/73M to Burdwān Ry. Stn.) 70 E (B.M. $85 / 73 \mathrm{M}$ to Mannkar Ry. Stn.)			
	70F (B.M. $76 / 7331$ to Pānagar Ry. Stu.) 70G(B.M. 58/73M to Durgāpur Ry. Stn.) 70H (B.M.. 28/73M to Rāniganj Ry. Stu.) 70 I (BM. 15/73M to Asansol, Kālipāhari \& Churulia) TOM (Khāna Ry. Stn. to Galsi Ry. Stn.)	73 I \& M	"	As. 12
1.7	77Q (Calcutta to Nārāyanpur) ? 77R (Nārāyanpur to Niāràyanpur)	79 ®	"	Ne. 1
16	87A (Moulmein to Paan) 87 B (Moulmein to Wekali) 87 E (Babukon to Kawmyatkyi) 87D (Nyaungbinzeik to Nat- chaung)	$94 \mathrm{H} \& \mathrm{~L}$ and 95 \&\&1	"	ts. 12

Levelling Pamphlets-(Continued).

	Line number	Situated in degree shects	$\underset{\substack{\text { Pnblished } \\ \text { in }}}{ }$	Price
17	$\left.\begin{array}{l}\text { 88B (Kyauktagi to Myitkyo) } \\ \text { 88C (Dalanun to Pazunmyaung) } \\ \text { 88D (Pegu to Zenyangbin) } \\ \text { 88E (Myitkyo to Okpo) } \\ \text { 84F (E. B N. at R. D. } 95 \text { of the } \\ \text { Yenwe Rimbankinent to Uaw) } \\ \text { 90d (Nyangzaye to Kandin) } \\ \text { 90B (Ma-ubin to Bassein) } \\ \text { 90C (Sagamya to Pantanaw) } \\ \text { 90E (Thonze to Rangoon) }\end{array}\right\}$	$\begin{aligned} & 85 \mathrm{~L}, \mathrm{~N}, \mathrm{O} \& \mathrm{P} \\ & \text { and } 94 \mathrm{~B}, \mathrm{C} \& \mathrm{D} \end{aligned}$	1928	lig_{8}
18	89.A (Kyaultse to Minzu) 8913 (Ywakainggyi to A marapura) 89C (Kyaukse to Mandialay) 89 D (Thugôn to Shwebo) 89E (Kabo to Myittaw) 49F (Okshitikan to Paukkan) 90 D (Meiktila to Yewe)	$\begin{aligned} & 93 \mathrm{~B} \& \mathrm{C} . \text { and } \\ & 8 \pm \mathrm{M}, \mathrm{~N}, \mathrm{O} \& \mathrm{P}^{\prime} \end{aligned}$	"	1s. 1.8
19	29C (Nira to Batgarh)	$47 \mathrm{~F} \& \mathrm{~J}$	1929	As. 6
20	53A (Madad Chāndin to Mehar)	35 M	,,	${ }^{\prime}$
21	54B (shikärpur to Kambar) ...	40 A	,	"
22	$5 \ddagger \mathrm{C}$ (Wāriàso to Rato-dero) ...	$34 \mathrm{P}, 35 \mathrm{M}$, $39 \mathrm{D} \& 40 \mathrm{~A}$	"	"
23	551 (Garh Mahārāja to Damāmia) 55K (Aherbela to Multān)	$39 \mathrm{~N}, 44 \mathrm{~A} \& B$	"	"
24	$\left.\begin{array}{l}\text { 55L (Rangpur to Muzaffirgarh) } \\ 5.5 \text { (Muzaffargarh to Basti } \\ \text { Maluk) }\end{array}\right\}$	$39 \mathrm{~N} \& 0$	"	As, 10
25	5 g ((Sujāhād to Sahuwāli) ...	390	"	As. 6
26	5.5 P (.Jahtuana to Kot Mālderi) ...	14.	,	"
27	56\% (Kasūr to Basirpur) ...		,	"
28	57D (Loclırāı to Bahāwalpur) ...	390	,	"
29	57 HI (Basirpur to Lodhrān) ...	$39 \mathrm{O}, 4 \cdot \mathrm{~B} \mathrm{~B}, \mathrm{O}$	"	,
30	87.J (Kntabpur to ddan wāhāı) ...	390	"	*
31	5iL (Dingarh to Khãnpur) ...	39 L, 10 \& ${ }^{3}$	"	"
32	57.31 (Mithra to Khänpur) ...	$\begin{gathered} 30 \text { If } \& \mathrm{I} \\ 40 \mathrm{E} \& 1 . \end{gathered}$	"	"
33	$57 N$ (Chachran to Khãblela) ...	$39 \mathrm{K.L.E}$	"	
34	748 (Kidlerpore to Dublat) ...	7913	"	
35	iiV (Hastings Bridge to Dakhinesar)	79 B	"	*

Levelling Pamphlets-(Concluded).

$\begin{aligned} & 6 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Line number	Situated in degree shoets	Published in	I'rice
36	70K (Allāhābād to Barākıur) ...	$\begin{gathered} \text { (i3 (i, K\& } O \\ 72 \mathrm{C}, \mathrm{G}, \mathrm{~K} \& \mathrm{~L} \\ \text { and } 73 \mathrm{I} \end{gathered}$	"	As. 14
37	70L (Mughal Sarai to Hazāribāgh Road)	630. 0.8 and $72 \mathrm{D} \& \mathrm{II}$	"	As. 10

Tide-Tables--

Since 1881 Tidal predictions based on the observations of the Survey of India have been published annually by the India Office, London, up till the year 1922. From 1923 onwards the prediction and publication have been undertaken at Dehra Dūn by the Survey of India. The tables give the times and heights of high- and low-water for overy day in the year for 37 ports, and are published early in the previous year. They are published as follows:-
(i) A single volune styled "The Major Series" comprising Tide-Tables for the following ports:-
suez, Aden, Bushire, Karāchi, Okha Point \& Bet Harbour, Bhāvnagar, Bombay, Cochin, 'Tuticorin, P’āmban Pass, Colombo, Madras, Vizagapatam, Dublat, Dianund Harbour, Kidderpore, Chittagong, Elephant Point and Rangoon. Price Rs. 8
(ii) Combined Pamphlets as below :-
(a) $\left\{\begin{array}{l}\text { Okha Point and Bet Harbour (Mouth of the Gulf of Cutch) } \\ \text { Porbandar } \\ \text { Port Albert Victor (Kāthiāwār) } \\ \text { Bhāviagar Price Rs. 1-8. }\end{array}\right.$
(b) $\left\{\begin{array}{l}\text { Marmagao } \\ \text { Kārwāar Price Rs. 1-2 }\end{array}\right.$
(c) $\left\{\begin{array}{l}\text { Dublat (Sägar Istand) } \\ \text { Diamond Harbour } \\ \text { Kidderpore (Calcutta) }\end{array}\right\} \begin{gathered}\text { Honghly River } \\ \text { Price Rs. 1-8 }\end{gathered}$
((i) $\left\{\begin{array}{c}\text { Amherst } \\ \text { Moulmein }\end{array}\right\} \begin{gathered}\text { Moulunein River } \\ \text { Errice Rs. 1-2. }\end{gathered}$
(e) $\left\{\begin{array}{l}\text { Tutienrin } \\ \text { Pämban }\end{array}\right.$

(g) $\left\{\begin{array}{l}\text { Diamond Island }\} \\ \text { Bassein }\end{array}\right\} \begin{aligned} & \text { Bassein River } \\ & \text { Price Rs. 1.2. }\end{aligned}$
(h) $\left\{\begin{array}{l}\text { Elephant Point } \\ \text { Rangoon }\end{array}\right\} \begin{aligned} & \text { Rangoon River } \\ & \text { Price Rs. I-2. }\end{aligned}$

Tide-Tables-(Continued).

(iii) Separate pamphlets for each of the following ports:-

Suez, Aden, Basruh, Bushıre, Karāchi, Bombay, Beypore, Cochin, Negapatam, Madras, Cocanāda. Vizagapatam. False Point, Chittagong, Akyab, Mergui, and Port Blair. Price of each pamphlet is ds. 12.

PART II.-GEODETIC WORKS OF REFERENCE

Everest's Great Arc Book.

1. An account of the Measurement of an Arc of the Meridian be. tween the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$, by Captain George Everest, F.f.s. \&c, East India Company, London, 1830. (Out of print)
2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}, 24^{\circ} 7^{\prime} 11^{n}$ and $29^{\circ} 30^{\prime} 48^{\prime \prime}$, by Lt.-Colonel G. Everest, r.f.s. and his assistants, East India Company, Loondon, 1847. (Out of print).
3. Engravings to illustrate the above. London, 1847. (Out of print).
G.T.S. Volumes - describing the operations of the Great Irigono. metrical Survey.

Vol. I-The Standards of Measure and the Base-Lines, also an Introduc. tory A ccount of the early operations of the Survey, during the period of $1800 \cdot 1830$. Dehra Dūn, 1870. (Out of print).
Appendir No. 1. Description of the method of comparing, and the appatatas employed.
Appendix No. 2. Comparisons of the Lengths of the 10 -feet Standard! A nnd B, and deterininations of the Difference of their Expnnsions.
Appendir No. 3. Comparisons between the 10 .feet Standurds I_{B}, I_{S} and A_{1}
Appendix No. 4. Comparisons of the 6 -inch Brass Scales of the Conpensnted Microscopes.
Appendir No. 5. Determination of the Length of the Inch [7.8] on Cary's 3 -foot Brase Scale.
Appendix No. 6. Compnrieons between the 10 -feet Standard Bars g and A for determining the Expansion of A.
Appendix No. 7. Final determination of the Differences in Length be. tween the 10 . Feet S tundurds I_{B}, I_{S} and A.
Appendix No. 8. On the Thermometers emploged with the Blandard of Length.
Appendix No. 9. Determination of the Lengths of the Sub-divisions of the Inch [a.b].
Appendix No. 10. Report on the Practical Errors of the Mesurement of the Cape Comorin Base.
Vol. II-History and General Description of the Reduction of the
Principal Triangulation. Dehra Dūn, 1879 . (Out of print).
Appendix No. 1. Investigations applying to the Indian Geodesy.
Appendix No. 2. Jhe Mierometer Microscope Theodolites.
Appendix No. 3. On Oliservations of Terrestrial kefraction at certain stations situated on the pluins of the I'njeial).
Appentix No. 4. On the Periodic Errors of Gradnated Circles, \&c.
Appendix No. 5. On certain Modifications of Colomel Everest's apslem of noserving introdnced to neeet the specialities of particular instraments.
G.T.S. Volumes-(Continued).

Appendix No. 6. On Tidal Observations at Karāchi in 1855.
Appendix No. 7. An alternative Method of obtaining the Formula in Chapters VIII and $X V$ employed in the Reduction of Triangulation.-Additional liormulx and Demons. trations.
Appendix No. 8. On the Dispersion of Circuit lirrors of Triangulation after the Angles hare been corrected for Figaral Conditious.
Appendix No. 9. Corrections to Azimuthal Observaticne for imperfect Instrumental Adjnstments.
Appendix No. 10. Reduction of the N.W. Quadrilateral-the Non-Circuit, I'riangles and their Final Figural Adjustments.
Appendix No. 11. The 'Theoretical Errors of the 'Iriangulation of the North-West Quadrilateral.
Appendix No. 12. Simoltaneous Heduction of the NW. Quadrilateral -the Computations.
Vol. 1II-North-West Quadrilateral-The Principal Triangulation, the Base-Line Fijgures, the Karāchi Longitudinal, N.W Himālaya, and the Great Indus Series. Dehra Dūu, 1873. (Out of print).
Vol. IV-North-West Quadrilateral-The Irincipal Iriangulation, the Great Arc-Section 24° - 30°, Ralıūn, Gurhāgarh and Jogi-Tīla Meridional Series, and the Sutlej Series. Dehra Hūn, 1876. Price Rs. $10-8$.
Vol. IVA-North-West Quadrilateral-The Principal Triangulation, the
Jodhpur andthe Easternsind Meridional Series with the details
of their Reduction and the Final Results. Dehra Dūn, 1886. Price Rs. 10-8.
Vol. V-Pendulum Operations details of, by Captains J. P. Basevi and
W. J. Heaviside, and of their Keduction. Dehra Dūn and Calcutta, 1870.

Price Rs. 10.8
Appendix No. 1. Account of the Remensurement of the I.ength of Kater'. Pendulum at the Ordnance Surey Office, Southampton.
Appendix No. © On the Relation between the Indian l'endulum Operations and those which have been condicted elsewheres
Appendix No. 3. On the Theory, Use and Bistory of the Convertible l'endulum.
Appendix No. 4. On the Length of the Secouds Pendulum determinable from Materials now existing.
Appendix No. b. A Biblingraphical List of Worke relating to Pendulum Operations in connection with the lroblem of the Figure of the Earth.
Dol. VI-South-East Quadrilateral - The Principal Triangulation and Simultaneous Reduction of the following series:- Great AreSection 18° to 24°, the East Coast, the Calcutta and the Bidar Longitudinal, the Jubbulpore and the Bilăpur Mcridionals. Dehra Dūn, 1880. (Out of print.)
Vol. VII-North-East Quadrilateral-General Deseription and Simultaneons Reduction. Also details of the following five series:-North-East Longitudinal, the Rudhon Meridinal, the Rangir
Moridional, the Amua Meridional, and the Karara Meridional.
Dehra Dūn, 1882. Price Rs. 10-8.

G.T.S. Volumes-(Continued).

Appendix No. 1. The Details of the Separate Reduction of the Budhon Meridicnal Series, or Series J of the North-East Quadrilateral.
Appendix No. 2. Reduction of the North-East Quadrilateral. The Nor. circuit I'riangles and their Final Figaral Adjnstmenta.
Appendix No. 3. On the Theoretical Krrors generated respectively in Side, Azimath, Latitude and Longitade in a Chain of 'Triangles.
Appendix No. 4. On the Dispersion of the Residual Errors of a Simaltaneous Reduction of several Chains of Triangles.

Vol. VIII-North-East QuadrilateraI-Details of the following eleven series:-
Gurwāni Meridional, Gora Meridional, Hurilāong Meridional, Chendwār Meridional, North Parasnāth Meridional, North Malūacha Meridional, Calcutta Meridional, East Calcutia Longitudinal, Brahmaputra Meridional, Eastern FrontierSection $23^{\circ}-26^{\circ}$, and Assam Longitudinal. Dehra Dūn, 1882.

Price Rs. 10.8 .
Vol. IX-Telegraphic Longitudes-during the years 1875-77 an 1880.81. Dehra Dūn, 1883.

Price Rs. 10.8 .
(1. Determination of the Geodetic Elements of Longitude Stations.
2. Descriptions of Points used for Longitude Stations.
3. Comparison of Geodetic with Electro-'I'elegraphic Arcs of Longitada.
4. Circait Errors of Observed Arcs of Longitade.
5. Results of Idiometer Observations made during Season 1880-81.

1. Situations of the Longitude Stations at Bombay, Aden and Snez

Appendices 2. Survey Operations at Aden.
to Part II. \{3. Resalts of the Triangulation.
4. Right Aacensions of Clock Stars.

Vol. X-Telegraphic Longitudes-during the years 1881-82, 1882.83, and 1883-84. Dehra Dūn, 1887. Price Rs. 10.8.
(1. Determination of the Geodetic Elements of the Longitade Stations,
2. Descriptions of Stations of the Connecting Triangulation and of those at which the Jongitude Observations were taken,
Appendices to Part I.
3. On the Errors in $\Delta \mathrm{L}$ cansed by Armature-time and the Retardation of the Electric Current.
4. On the Rejection of some doubtful Arrs of Season 1881-82.
5. On the probable Canses of the Crrors of Arc-mensarements, and on the Nature of the Defects in the Transit Instruments which might produce them.
Vol. XI-Astronomical Latitules-during the period 1805-1885. Dehra Dun, 1890.

Price Re. 10.8.
Vol. XII-Sonthern Trigon-General IUescription and Simultaneous Re. duction. Also details of the following two series:-Great Arc-Section $8^{\circ}-18^{\circ}$, and Bombay Loncitudinal. Dehrn Din, 1890.

Price Rs. 10.8.
Vol. XIII-Southern Trigon-Details of the following five series:-South Konkan Coast, Mangalore Meridional, Madras Meridiomal and Coast, South-Enst Coast, and Madras Longitudinal. Dehra Dūn, 1890.

Price Rs. 10.8.

Vol. XIV-South-West Qualrilateral-Details of Principal Triangulation and Simultaneous Reduction of its component series. Dehra Dūa, 1890.

Price Rs, 10-8.
Vol. XV-Telegraphic Longitudes-from 1885 to 1892 and the Revised Results of Volumes IX and X : also the Simultaneous Reduction and Final Results of the whole Uperations.
Dehra Dūn, 1893.
Price R8. 10-8.
Appendix No. 1. Determination of the Geodetic Elements of the Longitude Stations.
Appendix No. 2. On Retardation. (A numerical mistake was made in this appendix in the conversion of a formula from kilometres to miles: the conclusions drawn cannot therefore be upheld).
Vol. XVI-Tidal Observations- from 1873 to 1892, and the Methods of Reduction. Dehra Dūn, 1901. Price Rs. 10-8.
Vol. XVII-Telegraphic Longitudes_during the years 1894-95-96. The Indo-European Arcs from Karāchi to Greenwich.
Dehra Dūu, 1901. Price Rs. 10-8.
Appendix No. 1. Descriptions of Pointe used for Longitude Stations.
Appendix No. 2. The Longitude of Madras.
Vol. XVIII-Astronomical Latitudes-from 1885 to 1905 and the deduced values of Plumb-line Deflections. Dehra Dūu, 1906.

Price Rs. 10.8.
Appendix No. 1. On Deflections of the Plumb-line in India.
Appendix No. 2. Determination of the Geodetic Elements of the Latitude Stations of Bajamara, Bahuk, Lambatach and Eidarkınta.
Appendix No. 3. On the (N-S) Difference exhibited by Zenith Sector No. 1.
Appendix No. 4. On the Value of the Micrometer of the Zenith Telescope.
Appendix No. 5. On the Azimuth Observations of the Great Trigonometrical Survey of Indin.
Appendix No. 6. A Catnlogue of the Publications of the Great Irigono. metricul surver of Indin.
Appendix No. 7. On the combination weights employed.
Vol. XIX-Levelling of Precision in India-from 1858 to 1909. Dehra Dũu, 1910.

Price Rs. 10-8.
Appendix No. 1. Rixperiment to test the chauges, due to moisture and temperature, in the Length of a levelliug sraff.
Appendix No. ©. On the ercetion of Standard Beuch-marlis in India daring the rears 190t-1910.
Appendix No. 3. Memorandum on the steps talicn in $1905 \cdot 1910$ to enable movements of the liarth's Crust to be detected.
Appendix No. 4. Drnamic and Orthometric corrections to the Himālayan levelling lines and circuit; and a cousideration of the order of maguitude of possible refraction errors.
Appendix No. B. The passage of rivers liy the levelling operations.
Appendix No. 6. The ertors of the Trigonometrical values of heights of stations of the Principal Triangulation.
G.T.S. Volumes-(Concluded).

Appendix No. 7. The effect on the spheroidal correction of emplor. ing theoretical instead of observed values of gravity and a discussion of different formulæ giving variation of gravity with latitude and height.
Appendix No. S. On the discrepancy between the Trigonometrical and Spirit-level values of the difference of height between Vehra 1 ūn and Mussoorie.
Vol. XIXA-Bench Marks on the Sonthern Lines of Levelling. Delira Dïn,
i910. Price Rs. δ^{\prime}.
Vol. xixb-Bench Marks on the Northern Lines of Levelling. Dehra Dun, 1910.

Price Rs. 5.

PART III.-HISTORICAL AND GENERAL REPORTS.

Memoirs.

1. A Memoir on the Indian Surveys, by C. R. Markham, India Office, London, $1871 . \quad$ Price Rs. 6.
2. A Memoir on the Indian Surveys. (Second Edition), by C.R. Markham, c.b., F.r.s., India Office, London, 1878.

Price Rs. $5-8$.
3. Abstract of the Reports of the Surveys and of other Geographical operations in India, 1869-78, by C. R. Markham and C.E.D. Black, India Office, London. Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890, by C. E. D. Black, India Office, London, 1891. Price Rs. 5-8.
"Notes of the Survey of India" are issued monthly. Price As.2.

Annual and Special Reports.

Reports of the Revenue Branch-1851-1877. (1851-67 nad 1869:70, out of print). Price Rs. 3.
Ditto Topographical Branch-1860-1877. (Out of print).
Ditto Trigonometrical Branch - 186].1878.-(1861.71, out of print). Price Rs. 2.
In $1 \times 7 \times$ the three branches were amalgamated, and from that dute onwards annual reports in single volumes for the whole departinent, were published as follows:-
Heneral Reporis $\left\{\begin{array}{l}\text { from } 1877.1900 \text { (1877.79. } 1887.48,1895.96 \text { and 1897.98, } \\ \text { out of print). Price Rs. } 3 \text { per volume. }\end{array}\right.$ from 1900-1922 (1002. 3 per volume.

Price Rs 2 per volume.
From 1900 unwardy the Keport was issued annualis in the form of a comblemod vatement known as (a) the "General Report" supplemented by fuller reports, which were called (b) "Extracts from Narrative Reports" up to 1909, and since theu until 1921 have been styled (c)"Records of the Survey of Inida".

Annual Reports \&c.-(Continued).
From 1922 the annual reports are published in three separate volumes of octavo size, viz., (a) General Report which is confined toreporting the Survey operations of the ordinary field parties and detachments with only brief abstracts of geodetic uperations, Map Publication and Office work. Published anually Price 192:-25 Rs. 2, from 1925 Re. 1. (d) Map Publication and Office Work report which contains all the Index Maps showing the Progress of Map l'ublication on all scales, with reports on publication and issue. Published anmually beginning with year 1924. Price Re. 1. (e) Geodetic Report which includes full details of all scientific work of the Geodetic Branch, Survey of India excluding the work of the Dehra Drawing Office and Publication Office. Vol. 1 of this series covers a period of three years $192 \cdots-25$. Price Rs. 6 . Sulsequent volumes will be published annually. There will be in addition occasional Records volumes.

These fuller reports are available as follows:-

(b) Extracts Volumes.

1900-01-Recent Improvements in Photo-Zincography. G. T. Triangulation in Upper Burma. Latitude Operations. Experimental Base Measurement with Jäderin A pparatus. Marnetic Survey. Tidal and Levelling. Topography in Upper Burma. Calcutta, 1903 (Out of print).

1901-02—G.'I. Triangulation in Opper Burma. Latitude Operations. Magnetic Survey. Tidal and Levelling. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904. (Out of print).

1902-03-Principal Triangulation in Upper Burma. Topography in Upper Burma. Topography in Shan States. Survey of Sāmblar Lake. Latitude Operations. Tidal and Levelling. Magnetic Survey. Introduction of the Contract System of Payment in Traverse Surveys. Traversing with the Subtense Bar. Compilation and Keproduction of 'Ihāna Maps. Calcutta, 190.

Price Rs. 1-8.
1903-04-Magnetic Survey. Pendulum. Tidal and Levelling. Astronomical Azimuths. Utilization of old Traverse Data for Modern Surveys in the United Provinces. Identification of Snow Peaks in Nepal. 'lopographical Surveys in Sind. Notes on town and Municipal Surveys. Notes on Riverain Surveys in the Punjab. Calcutta, 1906.

Price Rs, 1-8.
1904.05-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Triangulation in Baluchistīn. Survey Operations with the Somãliand Field Force. Calcutta, 1907.

Price Rs. 1-8.
1905.06-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Topograpliy in Shan States. Calcutta, 1908. Price Rs. 1-8.
1906.07-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Triangulation in Baluchistan. Astronomical Latitudes. Topography in Shan States. Calcutta, 1909.

Price Rs. 1.8.
1907-04-Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pendulum Operations. Topography in Shan States. Calcutta, 1910. Frice Rs. 1-8.
190s-09-Marnetic Survey Tidal and Levelling Pendulum Operations. Triangulation. Calcutta, 1911. Price Rs. 1-8.

Annual Reports \&c.-(Continued).

(c) Records of the Survey of India.

Vol. I-1909-10 -'Topographical Survey. Triangulation. Tidal and Level. ling Operations. Geodetic Survey (Astronomical latitudes and pendulum observations). Magnetic Survey. Calculta, 1912.

Price Rs. 4.
Vol. II-1910-11—Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Surver. Calcutta, 1912.

Price Re. 4.
Vol. III-1911-12-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Surrey. Calcutta, $1913 . \quad$ Price Rs. 4.
Vol. IV-1911-13-Explorations on the North-East Frontier-North Burma, Mishmi, Abor and Miri Surveys. Calcutta, 1914. Price Rs. 4.
Vol. V--1912-13-Topographical Survey. Triangulation. Tidal and Lerel. ling Operations. Geodetic Survey. Magnetic Survey. Note on the relationship of the Himalayas to the Indo-Gangetic Plain. Calcutta, 1914.

Price Rs. 4 .
Vol. VI-1912-13-Link connecting the Triangulations of India and Russia. Dehra Dūn, 1914.

Price Rs. 4 .
Vol. VII-1913.14-Topographical Survey. Triangulation. Tidal and Level. ling Operations. Geodetic Survey. Magnetic Survey (Annual report and Government Committee's report). Note on Scales and cost rates of Town plans. Calcutta, 1915. Price Rs. 4. Vol. vili- $\left\{\begin{array}{l}\text { 1865.79 Part I } \\ \mathbf{1 8 7 9} 92 \text { Part II }\end{array}\right\}$ Explorations in Tibet and neighbouring regions. Dehra Dūn, 1915. Price of each part Rs. 4 . Vol. VIII(A)-1914-Explorations in the Eastern Kara-koram and the Upper Yärkand Valley, by Lt. Colonel H. Wood, r.e. Dehra Dūn 1922. Price Rs. 3.
Vol. IX-1914-15-Topographical Survey. Triangulation. Tidal and Levelling Operations. Magnetic Survey. Criterion of strength of Indian Geodetic Triangulation. A traverse sigual for City Survegs. "The plains of Northern India and their relationship to the Himālaya Mountains" an address by Colonel S.G. Burrard, f.rs. Report on I'urco-Persian Frontier Conmission. Calcutta, 1916. Price Rs. 4.
Vol $x-1915-16$-Topographical Survey. Tidal and Levelling Operations. Magnetic Survey. Mechanical Integrator for calculating Attractions (illustrated). Traverse Survey of the boundary of Imperial Delhi. Dehra Dūn, i.917. Price Rs. 4.
Vol. XI-1016-17-Topographical Survey. Triangulation-use of high trestle for stations and 100 -feet mast signals. Tidal and Levelling Operations. Marnetic Survey. Note on Baseri's Peudulum Operations at Moré. Photo-Litho Offce-Ner method of preparing Layer plates-Developments and Im. provements in preparing Tint-plates.

Dehra Dūn, 1918. Price Rs. 4 .
Vol. XII-Notes on Survey of India Maps and the modern development of Indian Cartography, by Lt.-Colonel W. M. Coldstream, r.E. Superintendent, Map Publication. Calcutta, 1919. Price Re. 3.

Annual Reports \&c.-(Continued).

Vol. XIII-1917-18-Topographical Survey. Tidal and Levelling Operations. Magnetic Surrey. Photo-Litho office-the Powder Process. Problem of the Himālayan and Gangetic Trough-Review by Dí. A. Morley Davies. Dehra Dūn, 1919. Price Rs. 4.
Vol. XIV-1918-10-Topographical Survey. Tidal and Levelling Operations Levelling in Mesopotamia. Magnetic Survey.

Dehra Dūn, 1920. Price Rs. 4.
Vol. XV-1919-20-Topographical Survey. Tidal work. Levelling-proposed new level net. Magnetic Surver. The Earth's Axes and Figure, by J. de Graaft Hunter (a paper read at the R.A.S. Geophysical Meeting). Report on the expedition to Kamet. Note on the Topograply of the Nun Kun Massif in Ladākh. Dehra Dūn, 1921. Price Rs. 4.
Vol. XVI-1920-21—Topographical Survey. Tidal work. Levelling and Magnetic Survey. High Climbs in the Himalaya prior to the Everest Expedition. Mt. Everest Survey Detachment Report, 1921. Traverse Survey of Allahālād city. Settlement of Boundary between Mysore and South Kanara.

Dehra Dūn, 1922. Price Rs. 4.
Vol. XVII-1923-Memoir on Maps of Chinese Turkistīn and Kansu from the Surveys made during Sir A. Stein's Exploratoins, 1900-01, 1906-08, 1913-15. Dehra Dūn, 1923. Price Rs. 12.
Vol. XVIII-1921-22-Topographical Survey. Tidal work. Levelling and Magnetic Surves. Traverse Survey of Allahābād city. Settlement of Boundary between Mysore and South Kanara. Notes on Rerision Survey in the neighbourhood of Poona.

Dehra Dūn, 1923. Price Rs. 4.
Vol. XIX-1901-20-The Magnetic survey, by Lt.-Colonel R. H. Thomas, d.s.o., r.e., and F. C.J. Bond, v.d.

Dehra Dūn, 1925. Price Rs. 4.
Vol. XX-1914-20—The War Record. Dehra Dūn, 1925 Price Rs 3.
Fal. XXI-1929.28-24-J. Air Surve. in the Irrauaddy Delta 1923-24, by Major C. G. Lewis, r.e., and
II. Reconnaissance Survey in Bhutan and South Tibet 1922, by Captain H. R. C. Meade, i.A.

Dehra Dūn, 1925. Price Rs. 1.8.
Vol. XXII-1926-Vxploration of the Shalisgam Valley and Aghil Ranges, 1926, by Major K. Mason, m.c., r.e.

Dehra Dūn, 1928. Price Rs. 3.

(e) Geodetic Reports.

Vol. I-1929-25-Computations and Research. Tidal work. Time and Magneticolservations. Latitude and Pendulum observations in Bihār. Assam and Kashmir. Levelling. Lecture on "The height of Mount Everest and other Peaks'".

Delura Dūn, 1928. Price Rs. 6.
Vol. II-1925-26-Computations and Research. Tidal work. L'ime and Magnetic olservations. Preparations for the Juternational Longitude Project. Triangulation Levelling. Investigation of the behaviour of tree bench-marki in India.

Dehra Dūu, 1928. Price Rs. 3.

Annual Reports \&c.-(Concluded).

Vol. III-1926-97-The International Longitude Droject. Computations and Publication of datia Observatories. Tides. Gravity and deviatiou of the vertical. Triangulation, Levelling. Re. search and 'Technical Notes resurding Personal Equation Apparatus and the height of Mount Everest.

Dehrıa Dūn, 1929. Price Re 3.
Vol. IV-1927-28_Computations and Publication of data. Observatorie. Tides. Gravity and deviation of the vertical. Triangulation. Levelling. Dehra Dūn, 1929. Price Re. 3

PART IV.-CATALOGUES AND INSTRUCTIONS

Departmental Orders.

From 1878 to 1885 the Surveyor General's orders were all issued as "Circular Orders". Since then they have been classified as follows:-

In 1904 the various orders issued since 1878 were reclassified $\%$ follows:-

Number to date.
1.-Government of Indin Orders. - Number to 834
2.-Circular Orders Administrative). - 420
3. -Circular Orders (Professional).- 196
4.-Departmental Orders (appointments, promotions, transfers, etc.)

These are numbered serially and had reached the above numbers by September 1928. Government of India Orders and Circular Orders (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orders (Professional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders hare been issued since 1910 in the form of "Circular Memos". These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows :-

1. *Government of India Orders (Departmental) 1878-1903.Calcutta, 190t.

Ditto ditto 1904-1908.-Calcuta, | 1909. |
| ---: |
| (Out of print). |

Ditto ditto 1900-1913.-Colerita, 1915.
Ditto ditto 1911-1918.-Calentia, 1920.
2. "Circular Orders (Administrative) 187s.1903. - Coalcutta, 1904.
Ditto ditto 1904-1908.- 'alcutte, 1909.

Ditto ditto 1909-1913.-(aleutta, 1915.
littn ditto 1914-1918.-Calcutta, 1920.
Ditto ditto 1919-1924.—Dehra Dūn, 1926.

Departmental Orders.-(Concluded)

3. *Regulations on the subject of Language Examinations for Officers of the Survey of India. Calcutta, 1914.
4. Map Publication Orders 1908-1914 (Superintendent, Map Publication's Orders.)-Calcutta, 1914.
5. Specimens of papers set at Examinations for the Class II Service.-Dehra Dūn, 1927 \& 1929 . Price Re. 1 per year.

Catalogues and Lists.

1. Catalogue of Maps published by the Survey of India, Corrected. to 31st March 1928, Calcutta, 1928. Price Re. 1.
Lists of new maps published during each month appear in the monthly NOTES OF THESURVEF OF INDIA. These mouthly lists are also issued separately.
2. Catalogue of Maps of the Bombay Presidency, Calcutta, 19i3. Price is. 4.
3. Catalogue of Maps of Burma.

Calcuttia 1925. Price As. 8.
4. Catalogue of Maps of Cantonments and Military stations. Dehra Dūn, 1927. Price ds. 8.
5. Catnlogue of Books in the headquarters Library, Calcutti, 1901. (Out of print).
6. Catalogue of Scientific Books and Subjects in the Library of the Trigonometrical Survey Office. Dehra Dūn, 1903.

Price Re. 1.
7. Classified Catnlogue of the Trigonometrical Survey Library. Dehra Dūn, 1921.

Gratis.
8. Green Lists-Part I-List of Officers in the Surver of India (annually to date lst January), Calcutta. Price Re 3.4. Part II-History of Services of Officers in the Surver of India (ammully to date 1st July), Calcutta. Price Rs. 1-8.
9. Blue Lists-Ministerial and Lower Subordinate Establishments of the Survey of India.
Part 1-Headquarters and Delira Dūn offices (pub. lished amually to date lat April). CalcuttaPrice Rs. 6-12.
Part II-Cireles and parties (published ammally to date 1st January). Calcutta. Price Ris. 5.
10 List of the publications of the Survey of India (published ammally) Dehra loun Gratis.
11. Price List of Mathemation Instrmment office. Corremen up to 1st September 1927, Calcuta, 1928 Gratio.

Tables and Star Cbarts.

1. Anxilinry Tables-to facilitate the calculations of the surver of India. Fourth Edition, Delrra Dūn, 1900. (Ont of print)
2. Anxilinry Tables-of the surver of Imia. Fiflit Elition, (revised and extended), by J. de (iraill Hunter, ma., sc.d., f. insif. p. In parts-
[^26]
Tables and Star Charts.-(Continued).

Part I-Graticules of Maps, (reprinted). Delira Dūn, $1926 . \quad$ Price Re. 1.
Part II-Mathematical Tables, (reprinted with addi. tions). Dehra Dūn, $1924 . \quad$ Price Re. 2.
Part III-Topographical Survey Tables, (reprinted with additions). Dehra Dūn, 1928. Price Re.3.
3. Tables for Graticules of Maps. Extracts for the use of Explorenh Dehra Dūn, 1918.

Price As. 4.
4. *Metric Weights and Measures and other tables. Photo-Litho Office. Calcutta, 1889. (Out of print).
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Din, 1886. (Out of print).
6. Logarithmic Sines, Cosines, l'angents and Cotangents to 5 places of decimals. Dehra Dūn, 1915. (Out of print).
7. Cominon Logarithms to 5 places of decinals, 1885. (Out of print).
8. Table for determining Heights in Traversing. Dehra Dün, 1888.

Price ds. 8.
9. Tables of distances in Chains and Links corresponding to a subtense of 20 feet. Dehra Dūn, 1889.

Price As. 4 .

10. *	Ditto	ditto	10 feet.	Calcutta, 1915.
$11 . *$	Ditto	ditto	8 feet.	Ditto.

12. Field Traverse T'ables. First Edition. Calcutta, 1928. Price A8. 8 .
13. Star Charts for latitude 20° N., by Colonel J. R. Hobday, r.s.c. Calcutta, 1904.

Price Re. 1.8.
14. Star Charts for latitude 30° N., by Lt.-Colonel S. G. Burrard, r.R., f.r.s. Dehra Dūn, 1906.

Price Rs. 1.8.
15. Star Charts for latitude 15° N. Dehra Dūn, 1928. Price Rs. 2 .
16. Star Charts for latitude 30° N. Dehra Dūn, 1928. Price Rs. 2.
17. Catalogue of 249 Stars for epoch 1st Jan. 1892, from observations by the Survey, Dehra Dūn, 1893. Price Rs. 2.
18. * Rainfall, maximum and minimum temperatures, from 1868 to 1927, recorded at the Survey Office Observatory, Dehra Dün, 1928.

Old Manuals.

1. A Manual of Surveying for India, detailing the mole of operations on the Revenue Survers in Bengal, and the North-Western Provinces. Compiled by Capt:ains R. Smpth, and H. L. Thuillier. Calcutta, 1831. (Out of print).
2. Ditro Second Edition. London, 18.55. (Out of print).
3. A Manual of Surveying for India, detailing the mode of operatione on the Trigononetrical. Topographical and Revenue Surveys of India. Compiled by Colonel H.L. Thuillier, c.s.i, f.r.s., and Lt..Colonel R. Smyth. Third Edition, revised and enlarged. Calcutta, 1875. (Out of print).
4. Hand-Book, Revenue Brauch. Calcutta, 1893. Price Rs. 2-8.
[^27]
Survey of India Hand-Books.

1. * Hand-Book of General Instructions, (in 2 vols.) Fifth Edition. 1927.
2. Hand-Book, Trigonometrical Branch, Second Edition. Calcutta, 1902. (Out of print).
3. Hand-Book of Trigonometrical Instructions.-Third Edition. Parts in pamphlet forms-

Part V-'The Tides. Third Edition, revised, Dehra Dūn 1926.
Part VI-Levelling. Third Editiou, revised, Dehra Dūn, 1928. Price Re. 1.
4. Hand-Book, Topographical Branch,-Third Edition. Calcutta, 1905. (Out of print).
5. Hand-Book of Topography.-Fourth Edition. Calcutta, 1911. Chapters, in pamphlet forms-

Chapter I-Introductory.-reprinted with additions, 1921.
Price As. 8.
" 1I—Constitution and Organization of a Survey Party. -reprinted with additions, 1923. Price As. 8 .
, LII—Triangulation and its Computation.-revised 1923.
Price Re. 1.
IV-Theodolite Traversing-Third Edition, 1927.
Price Re. 1.
V-Plane-tabling.-Third Edition, 1926. Price Re. 1.
" VI-Fair Mapping.-reprinted with additions and revised, (Sixth Edition) $1928 . \quad$ Price Re, 1.
Chapter VII-Ciorest Surveys and Rectangulation (old Chapter IX) revised, $1925 \quad$ Price As. 8.
, VIII-Surveys in war and Trans-frontier Reconnaissance (old Chapters VII and VIII). Under preparation.
,, IX—Geographical Mitps (old Chapler XI). Second Edition, $1926 . \quad$ Price As. 8.
" X—Map Reproduction. Second Edition, 1919. Price As. 8.
6. *Photo-Litho Orfice, Notes on Organization, Methods and Processes, by Major W. C. Hedley, r.e. Third Edition. Calcutta, 1924.
7. The Reproduction (for the guidance of other Depariments), of Maps, Plans, Photographs, Dingrams, and Line Illustrations. Calcuttil, 1914 Price Rs. ${ }^{3}$.
8. Survey of India Copy Buok of Lettering. Calculta.

Price Rs. 3 -S.

Notes and Instructions.

Drawing and paper.

1. *Notes on Printing Papers suitable for Maps, and on Whatman Drawing Paper, by Major W. M. Coldstream, r.e. Calculta, 1911. (Out of print).
[^28]
Notes and Instructions.-(Continued).

Printing and Field Litho processes.

2. *Report on Rubber Offset Printing for Maps, by Major W. M. Coldstream, ree. Calcuttn, 1911.
3. *Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for a small section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1913.
(Out of print).
4. * Notes on some of the Methods of Map Reproduction suitable for the Field with appendix-Suggested Equipment I'ables for the Light Field Litho. Press (experimental), by Lieut. A. A. Chase, r.e. Calcutta, 1911.
5. *Report on a trial of the equipment of the 1st (Prince of Wales' Own) Sappers and Miners, for reproducing maps in the field, by Liear. A.A. Chave, ree. Calcutta, 1912 (Out of print).

Base Lines and Magnetic.

6. *Notes on use of the Jäderin Base line Apparatus. Dehra Dün 1904. (Out of print).
7. *Miscellaneous Papers relating to the Measurement of Geodetic Bases by Jäderin Invar Apparatus. Dehra Dūn, 1912.

8 *Instructions for taking Magnetic Observations, by J. Eccles, m. a. Jelıra Dūn. 1896. (Out of print).
9. Rectangular Co-ordinates.-On a Simplification of the Computations relitiug to, by J. Bccles, m. a. Dehra Dün, $1911 . \quad$ Price Re. 1.
10. *For Explorers. - Notes on the use of Thermometers, Baroneters and Hypsometers with Tables for the Computation of Heights, by J. de Graaff Hunter, m.a. Dehra Dūn, 1911. (Out of print).
11. *Amended Instructions for the Survey and Mapping of Town Guide Maps. August 1919

12 *Notes on boundary ribands on maps of the Survey of India, by Major F. Fraser Hunter, d.s.o., i a. Calcutta, 1922.
13. *Notes on the map of Arabia and the Persian Gulf, with a general index of place names on the map, 1905-08, by Captain F. Fraser Hunter, 1.a. Calcutta, 1910.
14. Lcconnts Pamphlet.-Notes on account for field units. Debra Dūn, 1928. Price Re. 1.

PART V.-MISCELLANEOUS PAPERS

Unclassified Papers.

Geography.

1. A Sketch of the Geography and Geology of the Himãlaya Mountains and Tibet (in four parts), by Colonel S. G. Burrard, r.e., F.r.s., Supdt., T'ismmentrical survegs and H. II. Hayden, B.A., F.t.s., Supdt, Geological Surver of ladia. Calcutta, 1907-09.

Part I.-The High Penks of Asia.
, II.-The Principal Mountain Ranges of Asia.
., 115.-The Rivers of the IIimālaya and Tibet.
2 *Report on the Identification and Nomenclature of the Uimalayan Peaks as seen from Kātmãndu, Nepāl, by Captain H. Wood, r.e. Calcutta, 1904.

[^29]Unclassified Papers-(Continued).
3. Routos in the Western-Himālaya, Kashmir, etc., by Lt.Colonel T. G. Montgomerie, r.e., f.r.s., f.r.g.s. Dehra Dūn, 1909. (Out of print).
4. Routes in the Westeru-Himälaya, Kashnir, etc. with which are included Montgomerie's Routes. Volume I. Pūnch, Kashmīr and Ladākh, by Majır Mason, m.c , r.e., First Edition, Delıra Dūn, 1923. Price Rs. 6 . Exploration.

1. *Account of the Survey Operations in connection with the Mission to Yärkand and Kashgar in 1873-74, by Captain Henry Trotter, r.e. Calcutta, 1875. (Out of print).
2. Report on the 'I'rans-Himālayan Explorations during 1869. (Out of print)
3. Report on the Trans-Himālayan Explorations during 1870. Dehra Dūn, 1871. (Out of print).
4. Rejort on the Trans-Himālayan Exploratious during 1878. Culcutta, 1880. (Out of print).

Special Reports.

1. *Report on the Mussoorie and Landour, Kumaun and Garhwàl, Rānīkhet and Kosi Yalley Surveys, extended to Peshāwar and Kāghān Triangulation during 1869-70, by Major 'I'. G. Moutgomerie, r.e. (Out of print).
2. Report on the Recent Deterinination of the Longitude of Madras, by Captain S. G. Burrard, r.e. Calcutta, 1897. (Out of print).
3. *Keport on the Observations of the 'Total Solar Eclipse of 6th A pril, 1875 at Camorta, Nicobar Jslands, by Captain J. Waterhouse. Calcutta, 1875. (Out of print).
4. *The Total Solar Eclipse, 22nd January, 1898. Dehra Dūn, 1898.
(1) Keport on the observations at Dumrann.
(2) Report on the observations at Pulgaon.
(3) Report on the observations at Sahdol.
5. *Report on Local Attraction in India, 1893.9£, by Captain S. G. Burrard, re. Calcutta, 1895. (Out of print).
6. *Report on the Trigonometrical Results of the Earthquake in Assum, by Captain S. G. Burrard, nee. Calcutta, 1898. (Out of print).
7. *Nutes on the Topographical Survey of the $1 / 50,000$ sheets of Algeria by the Topographical Section of the "service Geographique de l'Armée", by Captain W. M. Coldstream, r.e. Calcutta, 1906.
8. *The Simla Estates Boundary Survey on the seale of 50 feet to 1 inch, by Captain E. A. Tandy, ree. Calcutta, 1906.
9. *A note on the stage reached by the Geodetic Operations of the Surrey of India in 1920, liy Lt. Colonel II. McC. Cowie, r.E.E. The Magnetic Survey of India, by Major R. H. Thomas, d.s.o., r.e. and a note on the present levelling policy, by Major K. Mason, m с, r.e. Dehra Dūn, 1922. (Out of print).

Gcodesy.

1. Notes on the Theory of Errors of Observation, by J. Rccles, m.a. Dehra Dūn, 1903.

Price ds. 8 .

Unclassifled Papers.-(Concluded).

2. "Note on " Change of the Axes of the Terrestrial Spleroid in relation to the 'L'piangulation of the G.T. Survey of India, by J. de Graaff Hunter. ma. Dehra Dūn. (Out of print), now incorporated in Professional Paper No. 16.
3. Report on the 'Treatment, and use of Invar in measuring Geodetic Bases. by Captain H. H. Turner, r.e. London, 1907. Price As. 8.

Projections.

i. On the projection used for the General Maps of India. Dehra Dūn, 1903. (Out of print).
2. *On the deformation resulting from the method of constructing the International Athas of the World on the scale of one to one million, by Ch. Lallemand. Translated by J. Eccles, m.A., together mith tables for the projection of $1 / \mathrm{M}$ Maps on the International system. Dehra Dün, 1912. (Out of print).

Mapping.

1. * Note on the different methods by which hills can be represented upon maps, by Colonel \&. G. Burrard, c.s.i., r.e., f.r.s., Survegor General of India. Simla, 1912.
2. *A Note on the representation of hills, by Major C. L. Roberteon, c.m..!., ree. Dehra Dūn, 1912.
3. *A Note on the representation of hills on the Maps of Indin, by Major F. W. Pirrie, i.A. Dehra Dūn, 1912.
4. A consideration of the Contour intervals, and Colour Scales, best suited to Indian 1/M maps, by Captain M.O'C. J'andy, n.e. Calcuta, 1913. (Out of print).

Professional Papers.

No. 1-Projection-Un the Projection for a Map of India, and adjacent Countries, on the scale of $1: 1,000,000$, by Colonel St. G. C. Gore, n.e. Second Eilition. Dehra Dūn, 1903.

Price Re. 1.
No. 2 *Base Lines-Method of measuring Geodetic Bases by means of Metallic Wires, by M. Jäderin. (Translated from Memoires Prësentês par Divers. Savants ā l' Acalënie des Sciences de l' Institute de France). Dehra Dūn, 1899. (Out of print).

No. 3-Base Lines-Method of measuring Geodetic Bases by means of 'onlbr's Compensated Bars, compiled by Lieut. H. McC'. Cowie, в.E. Dehra 1) u . 1900 . (Out of print).

No. 4 -Spirit levels-Notes on the Calibration of l.evels, by Lieut. Li, A. Tandy, ree. Dehra Dūn, 1900, (Cut of print).

No. :-CRendesy-The Attraction of the Himālaya Mountains upon the Plumb.Line in India, considerations of recent data, by Major s.G. Burrard, re. Second Edition. Dehra llūn, $1901 . \quad$ Price Be. 2.

No 6-Base Lines-Account of a Determination of the Coefficients of Expansion of the Wires of the Jäderin Base Line Apparatus, by Captain G. P. Lenor-Conyngham, r.e. Dehra Dün, 1902. (Out of print).

[^30]Professional Papers.-(Continued).
No. 7-"Miscellaneous. Calcuttn, 1903.
(1) On the values of Longitude emplosed in maps of the Surver of India.
(2) Levelling across the Ganges at Damuirतia.
(3) Experiment to test the increase in the length of a levelling staff due to moisture and temperature.
(4) Description of a sun-dial designed for use with tide-gaugen:
(5) Nickel-steel alloys and their application to Geodesy (Translated from the French).
(6) Theory of electric projectors. ('Iranslated from the French).

No 8-Magnetic-Experiments made to determine the temperature coefficients of Watson's Magnelographs, by Captain H. A. Denholm Fraser, i.e. Calcutta, 1905.

Price Re. 1.
No. 9-Geodesy-An Account of the Scientific work of the Survev of India. and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Suriey Committee assembled in 1905, by lit.-Colonel S. G. Burrard, r.e., f.rs. Caleutta, 1905. Price Re. 1

Vo. 10-Penduhms-The Pendulum Operations in Tmdia 1903-1907. by Major G. P, Lenox-Conyugham, r.e. Dehra Iūn, 1908. P'riee Rs. 2-8,

No 11-Refraction-Observations of A tmospheric Refraction, 1905-09, by H. G. Shaw, Survey of Iudia. Dehra Dūu, 1911. (Out of print).

No. 12-Geodesy-On the Oriein of the Himatara Moumtime, by Colonel S. G. Burrard, c.s.i., r.e., f.in s. Calcuta, 1912. Price Re. 1.

No. 13-Isostasy-Investigation of the Mhenry of Isnstasy in India, by Major H. L. Crosthwait, r.e. Dehra Dūn, 1912. (Out of print.).

No 14-Refraction-Formulx for Atmospheric Refraction, and their application to Terreatrial Refraction and Geodesy, by J. de Graafl Hunter, m.s. Dehra lūn, 1913. Price Rs. 2.

No. 15-Pendnlums-The Pendulum Operations in India and Burma. 1908-13, by Captain H. J. Couchman, r.e. Dchra Dūn, 1915. Priere Rs. 2-S.

No. 16-Geodesy-The Earih's Axes and Triangulation, by J de Graaff Huntrr, ma. Delıra Dūn, $1918 . \quad$ Price Rss 4.

No. 17-Isostasy-Investigations of Tsostasy in Himãaran and neighbouring regions br Colonel sir s. G. Burrard, íc.c s.i., r.e., f.i.s. Dehra Dūn, 1918 (Out of print).

No. 18-Isostasy-A criticism of Mr. R. D. Oldham's memoir "'The structure of the Himalaras anl of the Gangetic Plain", by I,t.-Colonel H. MeC. Cowie. re. Dehra Dün, $1921 . \quad$ Tion Rs. 18 .

No. 19-Aerinl Photography - Experiments in Acroptame llono Sur.
 Dehra I ū̆n, 1920 Prier Rs. 1-S.
in. 20-Air Survey-Recomaissance Rumey from dianat, hy Lt.Colonel G. A. Beazeler. ds.o, ref. Dehwa Dül, 1927 . Frir Rs. 1-s.

No. 21-Rectangulation-Imigation and setflement Survers 1!26. hy Major J. D. Campbell, d.s.o, rev. Delira Dü", $1927 . \quad$ Prior nie $1-\dot{8}$.

No. 22-Levelling - Thoce touress of Error in precise Levelines. hy Captain G. Bomford, req. Dehra Dūn, 1929 . Price jis $1 . \dot{\mathcal{E}}$

[^31]
Profossional Papers.-(Continued).

No. 23-*Air Survey-Air Survey of Wazīristān 1923 to 1928, by Captain G. F. Heaney, r.e. Dehra Dūn, $1928 . \quad$ Price As. 8.

No. 24-Air Survey-Notes on Air Survey in India, by Major W.J. Norman, m.c., r.e. Dehra Dūn, $1929 . \quad$ Price Rs. 1.8.

No. 25-Glaciers -The Representation of Glaciated Regions on maps of the Survey of India, by Major Kenneth Masou, m.c., r.e. Dehra Dün, 1929.

No. 26-Projection-The Lambert Conical Orthomorphic Projection, by Lt.-Colonel C. M. Thompson, i.s. Dehra Dūn, 1929. (Provisional Is8ue).

Departmental Papers Series. \dagger

No. 1-Type-A consideration of the most suitable forms of type for use on maps, by Captain M. O'C. Taudy, r.e. Dehra Dūn, 1913

No. 2-Symbols-A review of the Boundary Symbols used on the maps of various countries, by Captain M. O'C. Taudy, d.e. Dehra Dūn, 1913.

No. 3-Maps-Extract from "The New Map of Italy, Scale 1: 100,000", by Luigi Giannitrapani. Translated from the Italian br Major W. M. Coldstream, r.e. Dehra Dūn, 1913.

No. 4-Town Surveys-A report on the practice of Town Surveys in the United Kingdom and its application to India, by Major C. L. Robertson, c.m.g., r.e Dehra Dūn, 1913.

No. 5-Stereo-plotter-The Thompson Stereo-plotter and its use, with notes on the field work, by Lieut. K. Mason, r.e. Dehra Dūn, 1913.

No. 6-Levelling-Levelling of High Precision, by Ch. Iallemand. Translated from the French by J. de Graaff Hunter, m.a. Dehra Dūn, 1914.

No. 7-Standard Bars-Bar Comparisons of 1907-08, by Major H. McC. Cowie, r.e. Dehra Dūu, 1915.

No. 8-Helio-Zincography-Report on Rubber Off-set Flat bed Machine Printing, by Captain S.W. Sackville Hamilton, R.e. Calcutta, 1915.

No. 9-Stereo-Anto-Plotting-A translation of Paul Corbin's French Stéréo Autogrammétrie, by Lt.-Colonel H. McC. Cuwie, r.e. Delra Dūn, 1922.

No. 10-Base Lines-A Booklet of Instructions with full descriptions and tables for The Hunter Short Base, compiled by Major C. M. Thompsou, i.A. Dehra Dūn, 1928.

No. 11-Gravity and Isostasy-Investigations regarding Gravity and Isostasy by W. Heiskanen (Translated by V. Pelta Esq. Revised and com. pleted by Major C. M. Thompson, ra.) Dehra Dūn, 1928.

No 12-Geadesy-Geodeny, by Dr. J. de Griaff Hunter, m.A., вc.D., f. inst. p. Dehra Dūn, 1929.

No. 13-Spherical Trigonometry and Astronomy-Notes on Spherical Trigonometry, and Astronomy, etc., by Lt.-Colonel C. M. Thompson, I.d. Dehra Dūn, 1929.

Professional Forms.

A large number of forms for the record and reduction of Survey Operations are stocked at Dehra Dūn.

[^32]List of more important contributions by the Officers of the Survey of India to various extra-departmental publications and related articles.

1. *India's Contribution to Geodesy, by General J.T. Walker, r.e., c.b., f.r.s., Ll.d. (Philosophical Transactions, Royal Society, Series A, Folume 186, 1895).
2. *On the lmensity and Direction of the Force of Gravity in India, by Lt.Colonel S. G. Burrard, R.e, f.r.s. (Philosophical Thansactions, Rioyal society, Series a, Volume 205, pages 289-318, 1905).
3. tA climb on Kolahoi, by Lieut. Kenneth Mason, r.e. (Royal Engineers Journal, November 1910).
4. *On the effect of the Gangetic Alluvium on the Plumb-line in Northern India, by R. D. Oldham, f.n.s (Proceedings of the Royal Society, Series A, Volume 90, payes $32-40$, 1914).
5. *On the origin of the Indo. Gangetic trough. commonly called the Himālayan lioredeep, by Colonel Sir S. G. Burrard, k.c.s.I., r.e., F.r.s. (Proceedings of the Royal Society, Series A, Volume 91, pages 220-238, 1915).
6. §Three comprehensive articles on "Comparators for the Indian Government" from a report by Major H. McC. Cowie, r.e. (Engineering, Aug. 20, Aug. 27, Sept. 3, 1915).
7. II Identification of Peaks in the Himălaya with notes, by Colonel Sir S. G. Burrard, к.c.s.I., н.e., F.i.s. (Geographical Journal, September 1918).
8. \|Geological interpretations of (ieodetic Results, by Colonel Sir S. G. Burrard, к.c.s.i., r.e., f.k.s. (Geographical Journal, October 1918).
9. ||War Surveys in Mesopotamia, by Colonel F. W. Pirrie, c.m.g. 1.A. (Geographical Journal, December 1918).
10. \|A Air Photography in Archæology, by Lt..Colonel G. A. Beazeley, d.s.o., r.e. (Geographical Journal, May 1919).
11. ||Mapping from Air Photographs, by Lt.-Colonel M. N. MacLeod, R.e. (Geographical Journal, June 1919).
12. ||Reminiscences of the Map of Arabia and Persian Gulf, by Lt.Colonel F.F. Hunter, d.s.o., i.A. (Geoyraphical Journal, December 1919).
13. \|Central Kurdistan, by Major K. Mason, m.c., r.e. (Geographical Journal, December 1919).
14. ||Surveys in Mesopotamia during the War, by Lt-Colonel G. A. Beazeley, d.s.o., r.e. (Geographical Journal, February 1920).
15. \ddagger A lecture on the Earth's Axes and Figure, by J. de Graaff Hunter, m.a. ('Ihe Observatory, May 1920).
[^33]
List of more important contributions by the Officers of the Surver of India \&c. \&c.-(Continued).

16. *A brief review of the evideace upon which the Theory of Isostasy las been based, loy Colonel Sir S. G. Burrard, к.c.s i., n.e., f.r.s. (Geographical Joumal. July 1920).
17. *A note on the topography of the NunKun Massif in Ladäkh, by Major K. Mason, m.c.. re. (Geographical Journal, August 1920).
18. * Sotes on the Canal System and Ancient Sites of Babylonia in the time of Xenophon. by Major K. Mason. m.c., к.e. (Geographical Journal, lecember $19 \because(0)$.
19. $\quad+$ An Exploration in South- Esast Tibet, by Major H. 'I'. Morshead, D.s.o., re. (Royal Engineers Journal, January 1921).
20. + Topographical Air Survey (with plates and maps), by Lt.-Colour (f. A. Beazeley, d.s.o., ree. (Royal Encrineers Jumrnal, February 1921).

21 . \ddagger Projection of Maps.-A review of some Investigations in the 'lheory of Map Projections, by A. E. Young. and Colonel Sirs. G. Burrard, к.c.s.i., E E., f.r.s. (Rosal lingineers Journal, March 1921).
22. \pm Report on Expedition to Kimet. 1920. by Major H. 'T. Morshend d.so., e.e. (Roval Encrineers Journal. April 1921).
$\because 3$. *The Circulation of the Cirth's Crust. by It-Colonel E. A. Tandy, re. (Georraphical Jourmal, May 1921).
2.f. §.Johnson's Suppressed dscent on E' 6l; by Major K. Mason, м.с., и.e. (Alpine Journal, Nuvember 102l).
2.). *Stereographic Survey. The Autocartorraph, by J.t.Colonel M. N. Mactext. is.o.. re. ((iencriaphical Journal, April 1922).
26. + The "('anadian" photo-tuporraphical method of Survey, br Captain and Br. Major E. (). Whreler. m.c., ree. (Royal Engineers Journal, April 1922).
97. SThe Survey of Mr. W. H. Johnson in the K'un Lum in 1865, by Major K Manon, m.c., r.e. (Alpine Journal. November 1922).
 (A Dictionary of Applied Physies. Vol. III).
29. HTrigonometrical Heights and Atmospheric Refraction, by J. de Graaff Hunter, ma., se.d., f. inst. p. (A Dictioniry of Applied Physics, Vol. III).

Bi. Georlesy, by Colonel sir G. P. Lenox-Conynurham. Kt.. r.e., fr.s. and J. de Gratif Hunter, m.a, sc.d. f. inst. P. (Linc. Brit. 12th Edition, Vol. SXXI, 1922).
31. *Thr proposed Determination of Primary Ionnitudes by International Conperation, by Colonel Sir G. P. Lenox-Conymintm, Kt., re., f.r.s. (Geographical Journal. February 1023).

[^34]
List of more important contributions by the Offleers of

 the Sur vey of India \&c. \&c. -(Continued).32. +Recent Developments of Air Photography-(1) The adjustment of Air Photographs to survey points, by Lt.-Colonel M. N. MacLeod, d.s.o., r.e. (Geographical Journal, June 1923).
33. \ddagger Mount Everest, by Major H.'T'. Morshead, ms.o.. r.E. (Royal Eugineers Journal, September 1923).
34. 十Kishen Singh and the Indian Explorers, by Major K. Mason м.с., r.e. (Geographical Journal. December 1923).
35. §Electrical registration of height of water at any time in Tidal Prediction, by J. de Graaff Itunter, m.A., se.d., f. inst. P. (Journal of Scientific Insiruments. Vol. I, No. S, May 1924).
36. \|Graphical methods of plotting from Air Photographs, by Lt.-Colonel J. N F.I. King, o.b.e., r.e.
$3 \overline{7}+$ The Demarcation of the Turco-Persian Boundary in 1913-14, by Colonel C. H. D. Ryder. r.e. (Geographical Journal. September 1925).
37. Geodesy, by J. de Graaff Hunter, ma., Sc.d., f. inst. p. (Enc. Brit. 13th Edition. New Vol. ii, 1926)
38. -The De Filippi Expedition to the Eastern Kara-komm, by B. B. D. and Colonel Sir (r. P. Lenox-Conrngham, Kt, uf., f.its., m.a. (Nature, 13th February 1926).
39. the Problem of the Shakgam Valley, by Colonel Sir Prameis Younghusband, к c.s.i., к c.i.e. (Groormphical Journal, September 192(6).
40. †the Shaksam Valley and Aghil Range, by Major K, Mason. m.c., r.E. (Genyriphical Journai, April 1927).
41. A Break-Circuit for Pendulum Clocks. by J. de Granff Hunter. m.A. sc.n.. f. inst. f. (Bulletin Géodésique No. 14. April, May, June 1927, Paris).
42. ta Graphical Discussion of the Figure of the Garth, by A.R. Hinks, c.be., f.r.s. (Gengraphical Journal, June 1997).
43. +Surrey on Active Service, by Captain G. F. Heaney, re. (Royal Engineers Journal, Jume 1927).
44. A Report on the Geodetic work of the Survey of India fin the period 1924.27. by J, de Grazff Hunter, m.a.. se.d.. f. inst. p.. presented at the third meeting of the International Union of Geodesy and Geophysics, Prague. September 1027.
45. +The Stereographic Survey of the Shaksgam, by Major K. Mason, m.c. r. f. (Geographical Journal, October 19:7).
46. +Figure of the Earth : correspondence by J. de Graaff Hunter, m.a., se.d.. f. inst. r. (Gengraphical Journal. December 1927).

48 . Figure of the Earth: correspondence be Captain (B. Bombord. n.v. (Geographical Journal, Necember 1927).
\dagger Ohtainabie from the Roral (toographical Sociely Knneinston fore, London, S. W. 7.
\ddagger Obtainahle from the Institation of Royal Encincers, Chathmm
§ Ohtainable from the Institute of Physias, 90 Vireat inssal Street, London W.C. 1.
\| Obtainable from H.M. Stationary office, Adaatral Hanse, Kingsway, London.
W.C. 2. 28, Abingrlon Street, Lumion, S.W.

बJ Obtainable from the office of Nature. St. Martin's Streel, London, W.C. :

List of more important contributions by the Officers of

 the Survey of India \&c. \&c.-(Conchuded).49. tReply to Captain G. Bomford's letter on Figure of the Eirth (No. 48 of list), by Captain G. 'T McCaw and A. R. Hinks, c.be., fr.s. (Geographical Journal, December 1927).
50. Figure of the Earth-Presidential address by J. de Graaff Hunter, m.a., se.d., f. inst. f., at the Section of Mathematies and Physics of the Jifteenth Indiau Science Congress, Calcutta 1928 (Published by the Assatic Society of Bengal, Calcutta).

5l. +Note on Sir lrameis Younghusband's Urdok Glacier, by Major Kenneth Mason, m.c., r.e. (Geographical Journal, March 1928).
52. \ddagger Some Applications of the Geoid by J. de Graaft Hunter, m.a., sc.d., f. inst. P. (The Observatory, June 1928).

[^35]Geod. Br. P.O.-450-1930.

INDEX TO THE TRIANGULATTON PAMPHLETS IRAQ, PERSIA \& AFGHANISTAN
 Corrected to 31 st. Dec. 1929.

Key to Sheet lettering International Sheet.

A	B	C	O	E	F
G	H	I	J	K	L
M	N	O	P	Q	R
S	T	U	V	W	X

In this system each numbered sheet (e.g. J.37) covers an area of 4 in latitude by $6{ }^{\circ}$ in longitude. The degree sheets are designated thus. $\frac{\text { North J- } 37}{8}$

Scale $\frac{1}{15,000,000}$ or $1 \cdot 013$ inches to 240 Miles.
$\begin{array}{lllllll}\text { Miles } & 100 & 50 & 0 & 100 & 200 & 800\end{array}$

REFERENCES.

1. Sheet published
2. Sheet sent to Press (ready in Mss. form)
3. Area containing no data

Note:-Grid lines bave been omitted between Degree sbects published in one pamphlet

Key to Sheet lettering

Indian Sheet.			
A	E	I	M
B	F	J	N
C	G	K	K
D	H	L	P

helio. ino. Dema dun.
To accompnny GeodetioReport Vol. V.

In this system each numbered sheet (e.g. 2) overs an area of 4° in latitude by $4^{\circ} \mathrm{in}$ longitude. The degree sheets are designated thus. 2.A

[^0]: * This in precisely Everest's valne derived from his Great Arc Series and the Greenwich-Formentara arc.

[^1]: * Excluding No. 2 D.O., Publication and Stores, F. M. O., and 20 Party.

[^2]: * i.e. a reference system which consists of true squares when exhibited on a map which is drawn on a Lambert projection with the same origin. On the ground, or on other maps the squares are not quite perfect.

[^3]: * On a grid with a central scalc factor this expression requires to be multiplied by that factor.
 $\dagger \rho_{0}{ }^{2} \nu_{0}{ }^{2}$, as given by Roussilue is clearly a misprint.

[^4]: * Comptes Rendus de 1’ ecademie des Sciences, July 30, 1928,
 † Natare, Jaunary 26,1929.

[^5]: * $+{ }^{\text {ve rate }}=$ gaiuing $\quad-$ ve rate $=$ losing.

[^6]: * Solirce of error unexplained.

[^7]: + Obtained from the mean of all hours of the 5 selected quit days in each month.
 Notr-The mean vertical force for any hour may be obtained by applying the hourly de v
 Notr-The mean vertical force for any hour may be obtained by applying the hourly deviation for that hour with the sign given, to the mean monthly value. Figures in thick type indicate the maximum and minimum values of the hourly deviation.
 $\boldsymbol{\gamma}=0.0000 \mathrm{C}$. G.S.

[^8]: * E is with regard to sign: E is without regard to sign.

[^9]: * The Dehra Dūn observations in 102ly and 1929 are related to a single set of observations at Kew in 1926 .

[^10]: * $n=6,378,541$ and $1 / \epsilon=292 \cdot 4$, See "Gcodesy", Dept. Paper No. 12, by de Graaff Hunter, and Geodetic Report Vol. III, pp. 80-82.

[^11]: * See Bulletin Geodesique No. 17, p. 30.
 \dagger Sce ile Graaff Hunter, Geophysical meeting of the R.A.S., 20-4-28, and Geodotic Report Vol, III page 81.

[^12]: * Old station revisited.

 Note:-In (icoletic Report Vol. IV lage G6, the co-ordinates of Chandragnp should have been given as $x 25^{\circ}=6^{\prime} 02^{\prime \prime} \cdot 52$ nud $1.6 .5^{\circ} 49^{\prime} 44^{\prime \prime} \cdot 29$, and of Gadaui as $\lambda 25^{\circ} 60^{\prime} 35^{\prime \prime} \cdot 6$ and L . $66^{\circ} 43^{\prime} 52^{\prime \prime} \cdot 4$, in plare of the figures given in that table.

[^13]: - To take account of Darwin's deviation from apberoidal form, which forms the banis of Helmert's later formala, it is necessary to increase A by $-\frac{2}{T} f$ and B by $-\frac{3}{3} f$, where $f=-10^{-6} \times 2 \cdot 05$.
 \dagger This ellipsoid has total mass M. distribated in any way which makes the bontduge ellipsoid a level sorface of its own attraction and rotation.

[^14]: * The standard spheroid is the surface chosen as reference sherninl filled with matter, whise tetal masa erpals that of the Earth. and which is distributed in such a manner that the bounding spheroil is also an equipotential, moditied only by Darwin's depression of 10 ft . in latitudes $45^{\circ} \mathrm{N}$, and S .
 + Forat great depths the Earth may be presumed to lack the strength necessary for the continued existence of an anomaly.

[^15]: * Withuat regard tus sign.

[^16]: * American Jonrnal of science. No. 81, Sept. 1927.
 \dagger Hayford "Figure of the Earth and Isostasy".
 \ddagger de Graaff Ganter. Survey of India "Gcodetic Report", Vol, I,

[^17]: Hayford anomalies: International Spheroid

[^18]: * The first of these figures represents the direct distance lerelled betwern terminal B. Ms. The grose total includes additional clieck-levelling at onds, and bianch lines to G. T. stationa etc.
 $\dagger \mathrm{i}, \mathrm{e}, 2 \times 112 \mathrm{t}$.

[^19]: * Whan relevelments are expresped as a percenase, this percentage refers to the

[^20]: * Serial numbera of line Jhang to 1 ahore.

[^21]: * Serial nnmbers of line Dehra-Kälsi-Mnssonrie.
 \dagger Serial numbers of line Kālsi - Chakrātā.

[^22]: * It. is of no consequence that this formala differe from that ased to define standard gravity. This formala is only a standard frow which to measure the anomaly A.

[^23]: *Or, rather, it would be if γ and γ, were calculated on the eame formula.

 + Its variation with height has to be ignored. If the anomaly is below seaderel and covers a large area, the variation with height is small.

[^24]: * $\sum \eta_{\mathrm{r}}\left(1-F_{0} / F\right)$ estimated ronghly by comparsion between Dehra buin and Rājpur
 \dagger A ralne arrived at before observations had been made at . Tharipani and Bprr Point.
 \ddagger These beight differences refer to B. Ms. $10 \& 51 / 53 . J$. Tho latter was not \& Iriangalation station, but bas becin connectol to the station by a short line of spirit. levelling.

[^25]: * Publications detailed in Parts III, IV and V are also obtainable from the Officer In chargo, Map Record and Issue Oftice, 13, Wood Streat, Galcutta.

[^26]: * For Departmental use only.

[^27]: * For Departmental use only.

[^28]: * For Departmental use only.

[^29]: * For Iepartmental use only.

[^30]: * For Departmental ase only.

[^31]: * For Departmental use only.

[^32]: - For Official use only. \dagger For Departmental use only.

[^33]: * Obtainable from Messrs Dulan \& Ou., 37, sioho square, Liondon, W.. or Messrs. Harrison \& Sons, St. Martin's Lanc, London, or the Royal Society at Rurlingtod House, London.
 \dagger Obtninuble from the lnstitution of Royal Engineers, Chatham.
 § Obtainable from Charles Robert Johnson at the offices of "Engineering", $3 \dot{5}$:ud 36, Bedford Street Strand, London, W.C.
 B.W. 7.
 || Obtainable from the Royul Geographicai Society. Kensington Gore, Loudon,
 \pm Obtainnble from Mesars Tuylor \& Francis, Red Lion Court. Fleet Street Lundon, $\stackrel{\rightharpoonup}{\mathbf{W}} . \mathrm{C}$.

[^34]: * Olıtainable f̣rom the Rnyal Gengraphical Society, Kensington Gore, Londob, S.W. 7.
 \ddagger (Ibtainable from the Inatitution of Royal Engineera, Cbatham.
 ş Ohtainable from Alpine Clob, 23 Savile Row, London, W. 1.
 \|| Nhtninahle from Mesara Mac Millnn \& Co. Limited., St. Martin's street.
 Loodon. W.C.. Bombay, Galentta. Morlras, Melbonrue.

[^35]: \dagger Obtainable from the Royal Georraphical Sociery, Kensington Gore, London, S.W. 7.
 \ddagger Obtainable from Messrs Taylor and Francis, Red Lion Court, Fleet Street, London, W.C.

